# Validating a claims-based algorithm for Lyme Disease in Massachusetts

Sheryl A. Kluberg,<sup>1</sup> Sarah J. Willis,<sup>1</sup> Noelle M. Cocoros,<sup>1</sup> Susan R. Forrow,<sup>1</sup> Bradford D. Gessner,<sup>2</sup> Emma R. Hoffman,<sup>1</sup> Robert Jin,<sup>1</sup> Aaron Mendelsohn,<sup>1</sup> Young Hee Nam,<sup>1</sup> Cameron Nutt,<sup>3</sup> Nathan Petrou,<sup>3</sup> Chanu Rhee,<sup>1,3</sup> Meera Sury,<sup>3</sup> John Aucott,<sup>4</sup> James Stark,<sup>2</sup> Sarah J. Pugh<sup>2</sup> <sup>1</sup>Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA<sup>2</sup> Pfizer Inc., New York, NY<sup>3</sup>Brigham and Women's Hospital, Boston, MA <sup>4</sup>Johns Hopkins University School of Medicine, Baltimore, MD

## **BACKGROUND & OBJECTIVE**

- Lyme disease (LD) is the fifth most reported notifiable disease in the US, but the true disease burden remains unknown due to inconsistent reporting.
- Claims-based algorithms estimate a 10-14-fold higher incidence compared to notifiable-disease surveillance,<sup>1,2</sup> but these algorithms are unvalidated.
- We validated a claims-based algorithm via medical record review of claimsidentified LD cases residing in Massachusetts (MA), a state where LD is endemic.

## METHODS

#### **Study population:**

- Members of Harvard Pilgrim Health Care (HPHC)
- Medical and pharmacy benefits for ≥6 months between January 2015-July 2019
- Massachusetts residency at enrollment

## Claims-based LD case-finding algorithm:

- ≥1 LD diagnosis code (ICD-9-CM: 088.81; ICD-10-CM: A69.2\*) AND ≥1 **antibiotic used to treat LD** ( $\geq$ 7 days' supply) within ±30 days of LD diagnosis
- No LD diagnosis codes in the 6 months prior, to establish incidence

## Chart review and validation:

- We sought medical records for patients meeting the LD algorithm who received care within the Massachusetts General Brigham system at diagnosis. Our target was ≥125 charts for review.
- Three clinicians received training on case classification and conducted chart abstractions and adjudications.
- Cases were classified as confirmed, probable, suspect, or ruled out using 2017 Council of State and Territorial Epidemiologists case definitions (Table 1).
- We assessed inter-rater reliability based on 20 multiply-adjudicated charts.
- We calculated positive predictive value (PPV) of the algorithm for identifying confirmed, probable, or suspect LD cases.

## RESULTS

- We identified 171 LD diagnoses occurring at an MGB facility and obtained 128 (75%) patients' charts for review.
- The mean weighted kappa statistic of adjudicator agreement was 0.94.
- Of the 128 charts reviewed:
- Demographics: 81% were adults ≥18 years; 51% were female; 70% resided in the counties closest to Boston (Middlesex, Norfolk, Suffolk)
- LD-related observations: 84% treated with doxycycline; 53% lab tested; 48% with EM rash; 9% with disseminated manifestation (musculoskeletal, cardiovascular, or nervous system).
- Seasonality of confirmed, probable, and suspect cases reflected known seasonal trends in LD incidence (Figure 1).
- **PPV** of claims-based algorithm to detect:
- $\succ$  Confirmed, probable, or suspect cases: 93.8% (95% CI 89.6-97.9%) > Confirmed or probable cases: 66.4% (95% CI 57.5-74.5%).

## **Table 1. 2017 Council of State and Territorial Epidemiologists Surveillance Definitions of Lyme Disease.**

| Classification | Definition                                                                               |
|----------------|------------------------------------------------------------------------------------------|
| Confirmed      | Erythema migrans (EM) w<br>(e.g., MA)                                                    |
|                | At least one late manifest                                                               |
| Probable       | Diagnosis of LD in clinical evidence of EM and no eli                                    |
| Suspect        | Diagnosis of LD in clinical<br>provider to treat LD but n<br>and no eligible late manife |
|                | EM with no known exposi-<br>late manifestations of LD                                    |
|                |                                                                                          |

**References**: 1. Nelson CA, Saha S, Kugeler KJ, et al. Incidence of clinician-diagnosed Lyme disease, United States, 2005-2010. Emerg Infect Dis. 2015;21(9):1625-1631. 2. Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. Estimating the frequency of Lyme disease diagnoses, United States, 2010-2018. Emerg Infect Dis. 2021;27(2):616-619.

with known exposure in a high-incidence state

- tation of LD and laboratory-confirmed LD I notes and laboratory-confirmed LD but no ligible late manifestations of disease
- I notes and antibiotics ordered by health care no laboratory confirmation, no evidence of EM, festations of LD
- sure, no laboratory confirmation, and no eligible

## (n = 120).



## Table 2. Adjudication results stratified by case characteristics.

#### Pediatric Adults

LD lab test p

Any lab conf

Erythema

Any diss

<sup>a</sup>Percentages sum to >100% due to rounding. <sup>b</sup>Case date 1/2015-9/2015 classified as ICD-9; case date 10/2015-6/2019 classified as ICD-10. <sup>c</sup>Disseminated symptoms include musculoskeletal, cardiovascular, and nervous system.

## CONCLUSIONS

- A claims-based algorithm combining diagnosis codes and antibiotic prescriptions identified LD cases in MA with high PPV.
- This algorithm could be used to describe the incidence of LD in regions with similar diagnostic, treatment, and coding practices.

## **DISCLOSURES & ACKNOWLEDGMENT**

declared no conflict of interests.



Harvard Pilgrim Health Care Instit



#### Corresponding Author: Sheryl A. Kluberg, PhD Sheryl\_Kluberg@harvardpilgrim.org

## Figure 1. Confirmed, probable, or suspect LD cases by calendar month

|                                      | Total<br>(n) | Confirmed<br>(%) | Probable<br>(%) | Suspect<br>(%) | Ruled Out<br>(%) |
|--------------------------------------|--------------|------------------|-----------------|----------------|------------------|
| Overall                              | 128          | 55%              | 12%             | 27%            | 6%               |
| ric (<18 yrs)                        | 25           | 76%              | 12%             | 12%            | 0%               |
| ts (≥18 yrs) <sup>a</sup>            | 103          | 50%              | 12%             | 31%            | 8%               |
| ICD-9 era <sup>b</sup>               | 25           | 64%              | 12%             | 16%            | 8%               |
| ICD-10 era <sup>b</sup>              | 103          | 52%              | 12%             | 30%            | 6%               |
| t performed                          | 68           | 40%              | 22%             | 31%            | 7%               |
| onfirmation <sup>a</sup>             | 24           | 63%              | 38%             | 0%             | 0%               |
| ma migrans                           | 62           | 98%              | 0%              | 2%             | 0%               |
| isseminated<br>symptoms <sup>c</sup> | 12           | 75%              | 0%              | 25%            | 0%               |

- **Conflict of Interests**: B.G., J.S., and S.P. are employees of Pfizer, Inc. All other authors
- **Source of Funding**: This study was supported by Pfizer, Inc.