#2048

U.S. Department of Veterans Affairs

/eterans Health Administration Central Texas Veterans Health Care System

Molecular Characterization and Resistance Factors of Circulating Acinetobacter baumannii isolates in **South-East Michigan**

Hosoon Choi PhD,¹ Jing Xu MS,¹ Munok Hwang MS,¹ Chetan Jinadatha MD, MPH,¹ Thanuri Navarathna BS,¹ Landon Ashby BS,¹ Morgan Bennett BS,¹ Keith S. Kaye MD,² Sorabh Dhar MD,^{3,4} Piyali Chatterjee MS, PhD ¹

¹ Central Texas Veterans Health Care System, ² University of Michigan, ³ Wayne State University, ⁴ John D. Dingell VA Medical Center

Introduction

- Acinetobacter is a gram-negative ESKAPE pathogen of rising concern
- Carbapenem-resistant Acinetobacter baumannii CRAb) is increasing due to widespread use of antibiotics.
- The *objective* of this study is to elucidate the molecular epidemiology of circulating antibiotic resistance genes causing multidrug resistant infections by using a combination of wholegenome sequencing and antibiotic susceptibility phenotyping.

Methods

- Bacterial isolates were derived from cultures taken from subjects 48 hours following admission as part of routine clinical care for patients between 2017-2020.
- Isolates were obtained from 16 hospital units (both ICU and non-ICU) across two hospitals in the Detroit area. Whole Genome Sequencing (WGS) was performed using Illumina MiniSeg or Nextseg.
- WgMLST analysis was performed using BioNumerics software v7.6. ResFinder software was used for analysis of antibiotic resistance genes.
- Isolates underwent antibiotic susceptibility testing using a broth microdilution method (VITEK2) and Clinical & Laboratory Standards Institute (CLSI) inhibitory concentration (MIC) cut offs were used to determine resistance phenotypes.

Figure 1: Acinetobacter baumannii scanning electron micrograph (SEM). Adapted from CDC/Science PhotoLibrary.

	ST Type		Antimicrobial Susceptibility				Betalactam Genes			
Sample	Oxford	Pasteur	Aminoglycoside	β-lactam	Quinolone	Carbapenem	blaADC-25	blaOXA-23	blaOXA-66	blaTEM-10
1	ST195	ST2	R	R	R	R	99.83	100	100	100
2	ST195	ST2	R	R	R	R	99.83	100	100	100
3	ST195	ST2	R	R	R	R	99.83	100	100	100
4	ST195	ST2	R	R	R	R	99.83	100	100	100
5	ST195	ST2	R	R	R	R	99.83	100	100	100
6	ST195	ST2	R	R	R	R	99.83	100	100	100
7	ST195	ST2	R	R	R	R	99.83	100	100	100
8	ST195	ST2	R	R	R	R	99.83	100	100	100
9	ST195	ST2	R	R	R	R	99.83	100	100	100
10	ST195	ST2	R	R	R	R	99.83	100	100	100
11	ST195	ST2	R	R	R	R	99.83	100	100	100
12	ST208	ST2	R	R	R	R	99.91	100	100	100
13	ST208	ST2	R	R	R	R	99.91	100	100	100
14	ST208	ST2	R	R	R	R	99.83	100	100	100
15	ST208	ST2	R	R	R	R	99.91	100	100	-
16	ST208	ST2	R	R	R	R	99.91	99.64	100	100
17	ST208	ST2	R	R	R	R	99.91	-	100	100
18	ST208	ST2	R	R	R	R	99.91	100	100	100
19	ST208	ST2	R	R	R	R	99.91	100	100	100
20	ST208	ST2	R	R	R	R	99.91	100	100	100
21	ST2768	ST406	R	R	R	R	99.65	100	-	-

Table 1: Molecular characterization of MDR CRAb isolates.

Conclusions

- The study demonstrated that all MDR CRAb isolates belonged to ST2^{Pas} (ST195^{ox} and ST208^{ox}) carrying multiple beta-lactamase genes including blaOXA-23 gene except one isolate belonging to ST406^{Pas} (ST2768^{ox}) lineage also carry the blaOXA-23 gene.
- Several cases of closely related MDR CRAb pairs have been found at hospital H2 in 2018. Potential cases of localized outbreaks of MDR CRAb is suspected.
- Continuous surveillance is recommended in limiting the spread of MDR CRAb isolates in the healthcare settings.

Results

References

Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021 Mar 19;10(3):373. doi: 10.3390/pathogens10030373 PMID: 33808905

Acknowledgements

Funding: This project is supported by 1R03HS027667 grant to P. Chatterjee. Support was also provided by the Central Texas Veterans Health Care System (CTVHCS) facility during the study period.

