

• 112 primary care centers in

 \circ Pediatric patients aged <15

○ January 1-December 31,

district, antibiotic prescribed, WHO

classification, symptomatic agents

access, watch, reserve (AWaRe)

prescribed, signs and symptoms

Descriptive statistical analysis

ICD-10 codes for ARI

Variables collected: age, sex,

Northern Vietnam

Inclusion criteria:

years

2019

Antibiotic Prescribing Practices in Pediatric Acute Respiratory Illnesses in Vietnam Hai Nguyen-Tran MD¹, Nam Nguyen MSc, PharmD², Long Ngo², Trang Nguyen², Nga Do PhD²,

BACKGROUND Table 1. Demographics and ICD-10 Codes of Pediatric ARI Encounters in 2019 in Antimicrobial resistance (AMR) is Northern Vietnam an increasing global challenge AMR is influenced by various factors • Antibiotic overprescribing Age, n (%) • Misuse of antibiotics 0 to <5 years 5 to 15 years • Knowledge gaps in antibiotics Mean (SD) • Evolution of bacteria Gender, n (%) Female Combating AMR is particularly Male challenging in low- and middle-District, n (%) income countries (LMIC) such as Hai Hau Nam Truc Vietnam Nghia Hung Truc Ninh High rates of AMR in Vietnam Xuan Truong Antibiotics frequently Y Yen ICD-10 Code, n (%) overprescribed in the pediatric H65: Nonsuppurative otitis media population and particularly for J00: Acute nasopharyngitis (common cold) acute respiratory illnesses (ARI) J01: Acute sinusitis J02: Acute pharyngitis The objective of this study was to J03: Acute tonsillitis J04: Acute larvngitis describe the antibiotic prescribing J06: Acute upper respiratory infections of multiple & uns practices for pediatric ARIs in J09+11: Influenza due to unidentified influenza virus Northern Vietnam J12+18: Viral pneumonia, not elsewhere classified J20+21: Acute bronchitis + Acute bronchiolitis J22: Unspecified acute lower respiratory infection **METHODS** Figure 1. Antibiotic Class Prescribed for Pediatric ARI Encounters in 2019 in Northern Vietnam Retrospective secondary analysis 20000 18988 on de-identified data sets from Overall prior OUCRU studies

*Tobramycin, chloramphenicol, metronidazole, spiramycin/metronidazole, sulfamethoxazole/trimethoprim

Daniel Olson MD¹, Sonia Lewycka PhD²

¹University of Colorado/Children's Hospital Colorado, ²Oxford University Clinical Research Unit (OUCRU)

RESULTS

	Received Antibiotics (N=34018)	Did Not Receive Antibiotics (N = 1661)	p-value
	8770 (25.8) 25248 (74.2) 7.8 (4.1)	423 (25.5) 1238 (74.5) 7.8 (4.0)	1.00
	16085 (47.3) 17933 (52.7)	826 (49.7) 835 (50.3)	0.057
	8096 (23.8) 3834 (11.3) 5741 (16.9) 2762 (8.1) 7313 (21.5) 6272 (18.4)	47 (2.8) 943 (56.8) 358 (21.6) 125 (7.5) 101 (6.1) 87 (5.2)	<0.00001 <0.00001 <0.00001 0.407 <0.00001 <0.00001
pecified sites	$55 (0.2) \\1991 (5.9) \\84 (0.2) \\20496 (60.3) \\3369 (9.9) \\178 (0.5) \\1184 (3.5) \\644 (1.9) \\1272 (3.7) \\4739 (13.9) \\6 (0.02)$	$\begin{array}{c} 0 \ (0.0) \\ 197 \ (11.9) \\ 4 \ (0.2) \\ 774 \ (46.6) \\ 121 \ (7.3) \\ 0 \ (0.0) \\ 37 \ (2.2) \\ 45 \ (2.7) \\ 5 \ (0.3) \\ 477 \ (28.7) \\ 1 \ (0.1) \end{array}$	0.1846 <0.00001 1 <0.00001 0.0003 0.0005 0.0045 0.222 <0.00001 <0.00001 0.2838

Northern Vietnam

	Received Antibiotics (N=34018)	Did Not Receive Antibiotics (N = 1661)	p-value
Chest Pain	37 (0.1)	0 (0.0)	0.4181
Cough	25728 (75.6)	1479 (89.0)	<0.00001
Dyspnea	1430 (4.2)	46 (2.8)	0.003
Ear Discharge	24 (0.1)	1 (0.1)	1
Ear Pain	46 (0.1)	2 (0.1)	1
Exudates	57 (0.2)	2 (0.1)	1
Fatigue	828 (2.4)	52 (3.1)	0.0748
Fever	13924 (40.9)	678 (40.8)	0.9389
Headache	1105 (3.2)	64 (3.9)	0.1795
Hoarse Voice	169 (0.5)	1 (0.1)	0.0053
Jaw Pain	28 (0.1)	1 (0.1)	1
Lymphadenopathy	166 (0.5)	2 (0.1)	0.0262
Myalgia	9 (0.02)	4 (0.2)	0.0024
Nasal Congestion	89 (0.3)	6 (0.4)	0.4567
Nausea	52 (0.2)	1 (0.1)	0.5191
Poor Appetite	1640 (4.8)	190 (11.4)	<0.00001
Rales	3276 (9.6)	388 (23.4)	< 0.00001
Rhinitis	6463 (19.0)	348 (21.0)	0.0511
Sinus Pain	1 (0.003)	0 (0.0)	1
Sneezing	1265 (3.7)	69 (4.2)	0.3537
Sore Throat	9347 (27.5)	503 (30.3)	0.0134
Sputum Production	3081 (9.1)	96 (5.8)	<0.00001
Tachypnea	48 (0.1)	0 (0.0)	0.1727
Throat Red	11500 (33.8)	304 (18.3)	< 0.00001
Tonsillitis	2439 (7.2)	100 (6.0)	0.0784
Vomiting	251 (0.7)	14 (0.8)	0.5593

Figure 2. WHO AWaRe Classification for Antibiotics Prescribed for Pediatric ARI Encounters in 2019 in Northern Vietnam

University of Colorado Anschutz Medical Campus

Table 2. Signs and Symptoms of Pediatric ARI Encounters in 2019 in

CONCLUSIONS

- Antibiotics frequently prescribed for pediatric ARI in Northern Vietnam, despite many likely secondary to viruses
 - Not only leads to AMR but can increase adverse drug events and unnecessary costs
- Majority of antibiotics prescribed were WHO AWaRe access antibiotics but >10% were still watch antibiotics or not recommended

LIMITATIONS

- Missing or incompletely documented charts
- Recall bias of signs and symptoms
- Limited to North Vietnam

IMPLICATIONS

- Further investigation into appropriateness of antibiotic prescriptions, particularly pharyngitis
- Identify target areas for improved prescribing practices to reduce burden of AMR
- Need for more stewardship initiatives in LMIC such as Vietnam

REFERENCES

- Antimicrobial Resistance. World Health Organization. Accessed February 7, 2020 https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance Bebell LM, Muiru AN. Antibiotic use and emerging resistance: how can resource
- imited countries turn the tide? Glob Heart. Sep 2014;9(3):347-58. Larsson M, Kronvall G, Chuc NT, et al. Antibiotic medication and bacterial resistanc
- to antibiotics: a survey of children in a Vietnamese community. Trop Med Int Health Oct 2000:5(10):711-21
- Nguyen KV, Thi Do NT, Chandna A, et al. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health. Dec 2013:13:1158
- Vu TVD, Choisy M, Do TTN, et al. Antimicrobial susceptibility testing results from 13 hospitals in Viet Nam: VINARES 2016-2017. Antimicrob Resist Infect Control. May 10 2021;10(1):78.