Imperial College London

77. - 77. 1947 (BA 77. - -

Efficacy of Approved And Unapproved Vaccines for SARS-CoV-2 in Randomised, Blinded Clinical Trials Andrea Perez Navarro¹, Victoria Pilkington¹, Toby Pepperrell², Andrew Hill³

Acknowledgements: Sreenidhi Venhatesh¹ for contributions to immunogenicity data analysis ¹ Imperial College London, London, UK; ² Edinburgh School of Medicine and Veterinary Medicine, UK; ³ University of Liverpool, UK

Background

- Several million people have died from COVID-19 in low or middleincome countries without access to effective vaccines.
- There are 5 SARS-CoV-2 vaccines approved in US and/or Europe: Pfizer/BioNTech, Moderna, Oxford/AstraZeneca, Janssen and Novavax, with cumulative sales above \$100 billion worldwide, since launch.
- Roll-out of these 5 vaccines by low-and-middle-income countries has been slow due to high prices, legal issues and logistical barriers to vaccine procurement and delivery.
- Several other SARS-CoV-2 vaccines have been evaluated in clinical trials but not yet approved.
- This situation could persist for many years unless lower-cost alternatives to the current 5 COVID-19 vaccines are found.

Objectives

- To compare the efficacy of US or European approved versus unapproved vaccines for endpoints of symptomatic or severe infection
- To compare the differences in elicited immune response between approved and unapproved vaccines

Methodology

SYSTEMATIC REVIEW

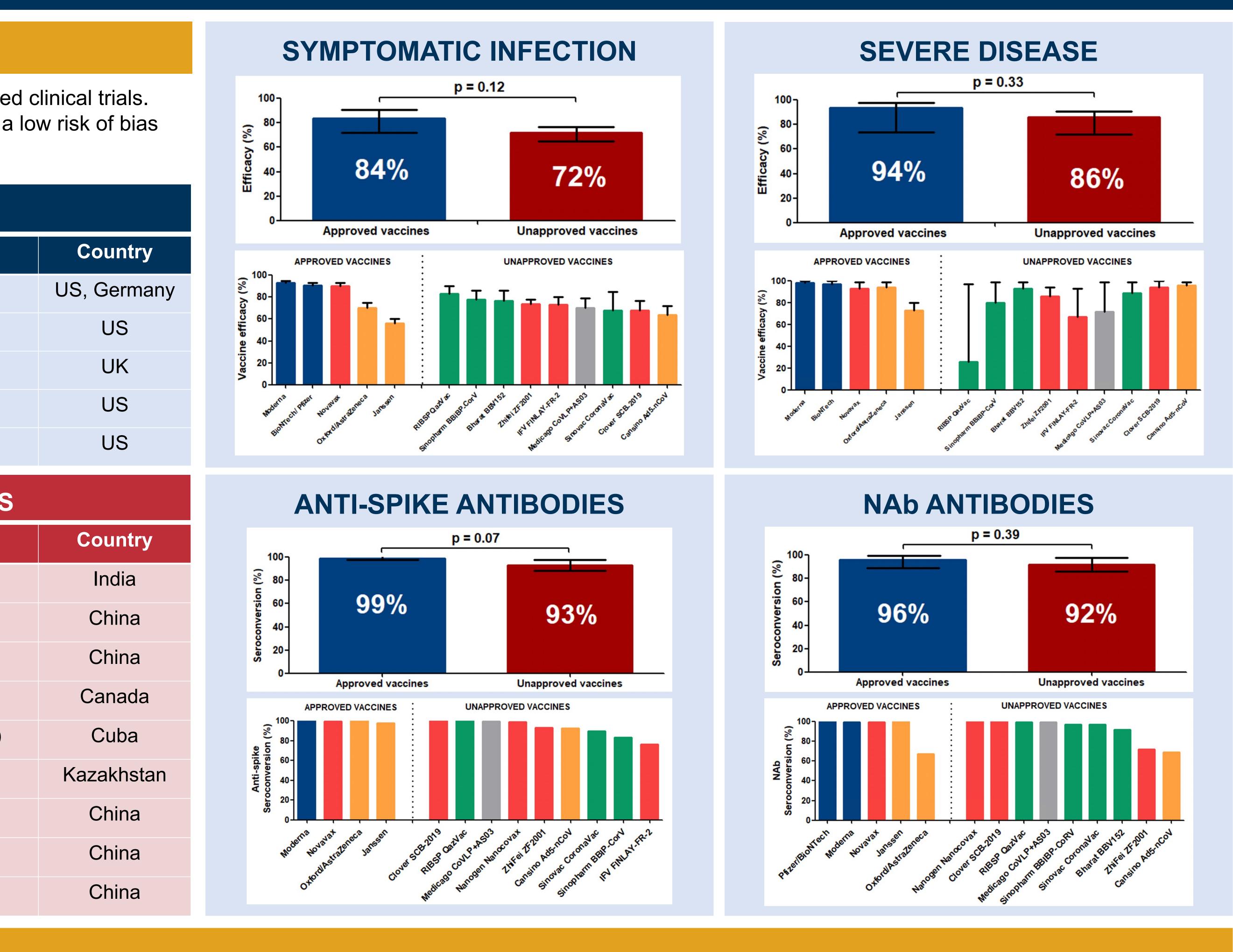
Screening of clinical trial registers, MEDLINE & EMBASE Inclusion of: Phase III RCTs of COVID-19 vaccines in healthy nonpregnant adults prospectively evaluating risks of symptomatic and/or severe COVID-19 with clearly defined endpoints OR immunogenicity trials

Q RISK OF BIAS ASSESSMENT

Cochrane RoB 2.0 tool (high risk studies excluded). Certainty of evidence assessed using GRADE

III. META-ANALYSIS

Use of Cochrane-Mantel-Haenszel Tests (random effects method) comparing relative risks of symptomatic & severe disease for each vaccine versus placebo


Results

- The search identified 19 publications of 22 randomised clinical trials.
- Risk of bias assessment showed 2 publications with a low risk of bias and 17 with some concerns.

	5 APPROVED VACCINES
Developer	Vaccine name
Pfizer/BioNTech	Comirnaty (BNT162b2)
Moderna	Spikevax (mRNA-1273)
Oxford/AZ	Vaxzevria (ChAdOx1-S)
Janssen	Jcovden (Ad26.COV2.S)
Novavax	Nuvaxovid (NVX-CoV2373)
9 UNAPPROVED VACCINES	
Developer	Vaccine name
Dhanat Diata ah	

Bharat Biotech	Covaxin (BBV152)
CanSino Biologics	Covidencia (Ad5-nCoV)
Clover Biopharma	SCB-2019 (-)
Medicago	Covifenz (CoVLP+AS03)
Instituto Finlay	SOBERANA 02 (FINLAY-FR-2)
RIBSP	QazCovid-in® (QazVac)
Sinovac	CoronaVac (-)
Sinopharm	Covilo (BIBP-CorV)
Anhui Zhifei Longcom	Zifivax (ZF2001)

Discussion & Conclusions

Approved and unapproved COVID-19 vaccines show comparable protection against both severe and symptomatic infection Both NAb and anti-spike seroconversion responses are not significantly different between approved and unapproved vaccines There were consistent results in sensitivity analyses. The clinical trials were of a high quality in risk of bias assessments. Differences in location and timing of trials, and differences in methodology may have influenced the conclusions drawn. Future head-to-head studies are recommended, comparing approved and unapproved vaccines.

The approval of low-cost, patent-free vaccines could increase access worldwide & lessen the risk of emergence of new variants.

Funding: International **Treatment Preparedness** Coalition / Make Medicines Affordable Campaign. McMaster University (Risk of Bias Assessment)

