Waleed Malik, MD¹, Ann Fisher, MD¹,², Brian Kotansky, PharmD², Louise Dembry, MD¹,², Rupak Datta, MD,

Background

- Community-acquired pneumonia is a leading cause of morbidity and mortality in the US
- Recent IDSA/ATS guidelines recommend urine antigen testing for Streptococcus pneumoniae and Legionella pneumophila only in patients with severe pneumonia
- We evaluated the utility of urine antigen testing for *S. pneumoniae* and *L.* pneumophila to improve quality of care at one institution

Questions

- Did patients who had a S. pneumoniae or L. pneumophila antigen test ordered meet IDSA/ATS criteria for testing?
- Did patients receive guideline-concordant therapy for pneumonia based on severity?

Patient has one of the following found in two or more serial chest imaging test results 2, 14: Either new and persistent OR progressive and persistent Infiltrate Consolidation Cavitation Pneumatoceles, in infants ≤ 1 year old AND Patient has at least one of the following: Fever (> 38.0°C or > 100.4°F) Leukopenia (≤ 4,000 WBC/mm³) Leukocytosis (≥ 12,000 WBC/mm³) Adults ≥ 70 years old, altered mental status with no other recognized cause AND Patient has at least two of the following: New onset of purulent sputum³ or change in character of sputum⁴, or increased respiratory secretions, or increased suctioning requirements New onset or worsening cough, or dyspnea, or tachypnea Rales^b or bronchial breath sounds Worsening gas exchange (for example: O₂ desaturations (for example, $PaO_2/FiO_2 \le 240)^2$, increased oxygen requirements, or increased ventilator

Figure 1: 2021 NHSN PNU1 Criteria

Methods

- Retrospective cohort study, 9/2018-9/2021
- Included patients with urinary antigen test for L. pneumophila and S. pneumoniae within 3 days of admission
- Evaluated for the presence of pneumonia defined based on NHSN criteria (Figure 1)
- Guideline-concordant therapy was assessed based on ATS/IDSA guidelines (Figure 2)
- Selected comorbidities based on the 2019 IDSA/ATS CAP guidelines included heart disease, lung disease, malignancy, chronic kidney disease, alcoholism, liver disease, and asplenia

Validated definition includes either one major criterion or three or more minor criteria

Minor criteria

Respiratory rate ≥ 30 breaths/min Pa_{O2}/F_{IO2} ratio ≤ 250 Multilobar infiltrates Confusion/disorientation Uremia (blood urea nitrogen level ≥ 20 mg/dl) Leukopenia* (white blood cell count $< 4,000 \text{ cells/}\mu\text{l}$) Thrombocytopenia (platelet $count < 100,000/\mu l$) Hypothermia (core temperature < 36°C) Hypotension requiring aggressive fluid resuscitation

Major criteria

Septic shock with need for vasopressors Respiratory failure requiring mechanical ventilation

Figure 2: 2007 ATS/IDSA criteria for defining severe CAP

Results

- 352 patients had urinary antigen test (341 Legionella) pneumophila, 222 Streptococcus pneumoniae) collected within 3 days of admission
- 64% (n=127) met criteria for pneumonia, with only 7% (n=25) meeting criteria for severe pneumonia
- Among patients with severe pneumonia (n=25), none had a positive urine *L. pneumophila* test, and two had a positive urine S. pneumoniae test
- Overall, there were 9 positive tests for *S. pneumoniae* and 1 for *L. pneumophilia* during study period
- 61% of patients with non-severe pneumonia and 52% of patients with severe pneumonia received guidelineconcordant therapy (Table 1)
- 5% of patients had prior isolation of MRSA and 4% of patients with *Pseudomonas aeruginosa* (Table 2)

Outcomes	Severe, N (%)	Non-Severe, N (%)	None, N (%)
Diagnostic			
Legionella urine antigen	25 (100)	100 (98)	216 (96)
S. pneumoniae urine antigen	21 (84)	70 (69)	132 (59)
Respiratory pathogen PCR panel	24 (96)	89 (87)	191 (85)
Sputum culture	20 (80)	54 (53)	137 (61)
Therapeutic			
Guideline-concordant therapy	13 (52)	62 (61)	78 (35)
Duration of Therapy			
<=5	8 (32)	44 (43)	72 (32)
>5	17 (68)	58 (57)	153 (68)

Table 1: Diagnostic and therapeutic characteristics of veterans according to presence of pneumonia, N = 352

Variable	N (%)	
Age, years		
<65	74 (21)	
≥65	278 (79)	
Male sex	342 (97)	
White	301 (86)	
Hispanic ethnicity	16 (5)	
Selected Comorbidities		
Heart Disease	268 (76)	
Lung Disease	203 (58)	
CKD	55 (16)	
Diabetes Mellitus	106 (30)	
Malignancy	115 (33)	
Prior Isolated Bacteria		
MRSA	16 (5)	
Pseudomonas	13 (4)	

 Table 2: Descriptive characteristics of study
cohort

Conclusions

- Most patients did not meet ATS/IDSA criteria for L. pneumophila or S. pneumoniae urine antigen testing
- Diagnostic stewardship interventions for CAP are needed to reduce unnecessary testing
- Evidence-based order sets may help to improve outcomes in CAP with guideline-based diagnostics and therapy

Acknowledgements

Hospital Epidemiology and Infection Prevention Program at the Veterans Affairs CT Healthcare System Yale School of Medicine, Section of Infectious Diseases