#237 NATIONAL CENTER FOR **IMMUNIZATION &** RESPIRATORY DISEASES

Risk Factors Associated with Multisystem Inflammatory Syndrome in Children: A Case Control Investigation

Laura D. Zambrano, PhD, MPH¹; Michael J. Wu, MSc¹; Lora Martin, MSN²; Lacy Malloch, BS²; Sabrina Chen, BS³; Margaret Newhams, MPH³; Suden Kucukak, MD³; Mary Beth Son, MD^{3,4}; Cameron Sanders, BS²; Kayla Patterson, MSc²; Natasha Halasa, MD⁵; Janet Chou, MD^{3,4}; Manish M. Patel, MD, MS¹; Adrienne G. Randolph, MD, MSc^{3,4,6}; Angela P. Campbell, MD, MPH¹; Charlotte V. Hobbs, MD²; for the Overcoming COVID-19 investigators 1. COVID-19 Response Team, Centers for Disease Control and Prevention, Atlanta, GA; 2. University of Mississippi Medical Center, Jackson, MS; 3. Boston Children's Hospital, Boston, MA; 4. Department of Pediatrics, Harvard Medical School, Boston, MA; 5. Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN; 6. Department of Anaesthesia, Harvard Medical School, Boston, MA

BACKGROUND

- Risk factors underlying multisystem inflammatory syndrome in children (MIS-C), a hyperinflammatory condition associated with prior SARS-CoV-2 infection,¹ remain unclear.
- Race/ethnicity and social vulnerability have been previously linked to MIS-C.²
- MIS-C also shares pathophysiology with classic autoimmune and rheumatologic diseases.³
- MIS-C development after infection may be associated with:
- Specific community and household exposures.
- Host susceptibility to immune dysregulation after infection and the degree and timing of antigenic exposure.⁴

Objective: Examine potential risk factors by comparing MIS-C patients and SARS-CoV-2 positive outpatients at risk for MIS-C.

METHODS

- Inclusion criteria
- MIS-C patients were hospitalized in 2021 across 14 US pediatric hospitals
- Outpatient non-MIS-C controls tested positive for SARS-CoV-2 within 3 months of their respective case-patient admission date and were frequency-matched by age group (0-4 years, 5–11 years, 12–15 years, 16–20 years) and site.
- Telephone surveys with caregivers queried exposures one month prior to MIS-C (cases) or one month after infection (controls).
- Associations between potential risk factors and MIS-C were assessed through mixed effects multivariable logistic regression.
- Population-attributable risk (PAR) was estimated for all exposures significantly associated with MIS-C as: PAR= $pe \times (OR - 1)/(1 + pe \times [OR - 1])$; pe = prevalenceof a given exposure among outpatient controls

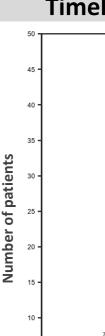
RESULTS

- Among 275 case-patients and 496 controls, MIS-C was associated with:
- Large event attendance (\geq 10 people)
- School attendance with limited mask-wearing
- Public transit
- Household crowding
- Having a household member test positive for SARS-CoV-2.
- These exposures collectively accounted for ~51% of PAR for MIS-C.
- Controls were more likely to have reported >1 positive SARS-CoV-2 test at least 1 month apart.
- Race/ethnicity, social vulnerability, underlying medical conditions, and family history of autoimmune or rheumatologic disease were not associated with MIS-C.

CONCLUSIONS

Factors potentially reflective of repeated or high viral exposures in the month after SARS-CoV-2 infection were each independently associated with developing MIS-C after infection. This investigation clarifies exposure profiles associated with MIS-C, reinforces the importance of non-pharmaceutical interventions to prevent viral exposure, and may inform future studies on the pathophysiology of MIS-C.

High or frequent viral exposures may promote MIS-C development after SARS-CoV-2 infection.

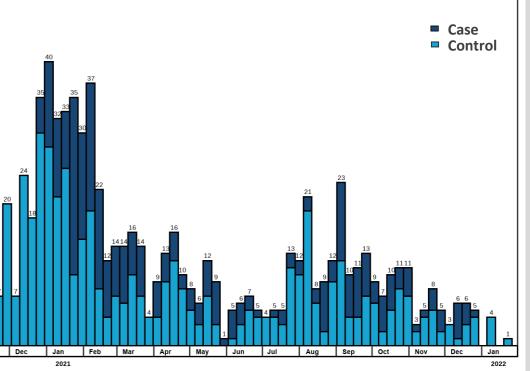

Overcoming COVID-19 group authors: Julie C. Fitzgerald, MD (Children's Hospital of Philadelphia); Matthew K. Leroue, MD (Children's Hospital Colorado); Mark Hall, MD (Nationwide Children's); Katherine Irby (Arkansas Children's), MD; Courtney M. Rowan, MD, MSc (Riley Hospital for Children); Kari Wellnitz, MD (Stead Family Hospital); Leila C. Sahni, PhD, MPH (Texas Children's); Laura Loftis, MD (Texas Children's); Tamara T. Bradford, MD (Children's Hospital of New Orleans); Mary Staat, MD (Cincinatti Children's); Christopher Babbitt, MD (Miller Children's and Women's Hospital); Christopher L. Carroll, MD (Connecticut Children's); Pia S. Pannaraj, MD (Children's Hospital) Los Angeles); Michele Kong, MD (Children's of Alabama); Jennifer E. Schuster, MD (Children's Mercy Kansas City) References

1. Feldstein LR et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. Jul 23 2020; doi:10.1056/NEJMoa2021680 2. Zambrano LD et al.. Investigating Health Disparities Associated with Multisystem Inflammatory Syndrome in Children after SARS-CoV-2 Infection. Pediatr Infect Dis J. Sep 2022; doi: 10.1097/INF.000000000003689

- 2020;183(4):982-995.e14. doi:10.1016/j.cell.2020.09.034

3. Galeotti C et al. Autoimmune and inflammatory diseases following COVID-19. Nat Rev Rheumatol. Aug 2020; doi:10.1038/s41584-020-0448-7 4. Gruber CN et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell. Nov 12

Characteristic Household m Worked outside Worked in healt


Household ar Divides time be Household crow Attendance at la Event was held Event was held Public transport In-person schoo In-person schoo Household mem History of >1 tes

Residence typ Apartment of con Multi-family Single family

Risk

Household memb Attendance at la Event was held Event was held Household crowd Public transporta In-person school OVERALL

Timeline of Index Event* for Cases and Controls

*Index event indicates date of MIS-C hospital admission (case-patients) and date of positive viral test (controls

Relative Likelihood of Exposure among MIS-C Cases

c			aOR
ember work status		<i>a</i>	
e of the home		-•-	1.18
thcare facility		-•-	1.13
nd community exposure	s		
tween >1 home		-•-	1.14
wding			1.54
arge event			1.76
indoors			1.62
indoors, limited masking		_ _	2.27
tation		-	1.73
ol		-	1.06
ol, limited masking		_	2.69
mber tested positive		_ —	2.05
st at least 1 month apart		· · · · ·	0.40
pe			
ondo			0.86
			0.70
			REF
	0.10	0.25 0.50 1.0 2.5 5.0 10.0)

Adjusted odds ratio

Population Attributable Risk

•				
	Unadjusted		Adjusted ^a	
	PAR %	95% CI	PAR %	95% CI
per tested positive for SARS-CoV-2	26.9	(15.5 -38.1)	26.3	(7.3 - 45.2)
rge event with≥ 10 people	16.7	(6.8 - 27.1)	16.5	(8.1 - 25.3)
l indoors	10.9	(2.5 - 20.7)	11.7	(4.1 - 20.1)
l indoors, limited masking	7.0	(1.9 - 14.4)	8.0	(2.7 - 15.5)
ling (≥2 residents per room)	12.4	(2.5 - 22.9)	13.5	(3.6 - 24.2)
tion	13.2	(4.8 - 22.9)	13.4	(7.4 - 19.7)
attendance, limited masking	4.1	(0.5 - 10.4)	5.5	(0.3 - 16.1)
	51.7	(31.6 - 66.6)	50.8	(27.1 - 67.7)

CONTACT INFO

Laura D. Zambrano Izambrano@cdc.gov

