

Evaluation of chronic antimicrobial suppression in ventricular assist device infections Teran NS¹, Sohail MR², Russo HR¹, Phe K¹

Baylor St. Luke's Medical Center

BACKGROUND

- Ventricular assist devices (VAD) prolong life expectancy or serve as a bridge to heart transplant in end stage heart failure, but patients are at high risk for device-related infections with a propensity for relapse
- Infections involving the device often require suppressive therapy due to the inability to obtain adequate source control
- Indications and efficacy of chronic antimicrobial suppression (CAS) to prevent relapse are not well defined

OBJECTIVE

To assess the agent-specific suppressive efficacy in preventing or delaying relapsed LVAD-specific and LVAD-related infections

STUDY DESIGN

Single-center, retrospective, observational study of adult patients admitted January 2013 to October 2020 at an 850-bed academic teaching hospital in Houston, Texas

Primary Endpoint

Incidence of and time to relapsed infections in patients with LVADspecific or -related infections

Secondary Endpoints Incidence of adverse events attributable to CAS agents

Inclusion Age \geq 18 years LVAD-specific or –related infection

Exclusion Non-LVAD-related infections

Statistics

Proportions were compared using Fisher's exact test or Chi-squared test for independence. A Mann-Whitney U test was utilized to compare time to relapse between the groups

Definitions

LVAD-specific infections: infections that only occur due to the presence of the device, including those affecting the pump, pump pocket, cannula, or driveline

LVAD-related infections: infections that occur more commonly in the presence of the device but may also occur in its absence, including infective endocarditis, mediastinitis, and bloodstream infections

Non-LVAD infections: infections that occur despite the presence or absence of the device, including urinary tract infections, pneumonia, *Clostridioides difficile* infection, and cholecystitis

Table 1. Baseline characterist

Characteristic

Sex, male, n (%) Age at index infection, years, Median (IQR)

Race, n (%)

Caucasian African American

Asian

LVAD model, n (%)

HeartMate II

HeartMate 3

HeartWare

Indication for LVAD, n (%) Bridge-to-transplant

Destination therapy

LVAD-specific infection, n (%) Driveline, superficial Driveline, deep Pump/pocket

Time to index infection, days, median (IQR)

¹Department of Pharmacy - Baylor St. Luke's Medical Center, Houston, TX ²Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX

STUDY DESIGN

RESULTS

cs (n = 83)		
CAS	No CAS	
(n = 47)	(n = 36)	
36 (77)	27 (75)	
55 (41-65)	59 (47-66)	
26 (55)	19 (53)	
20 (43)	17 (47)	
1 (2)	0 (0)	
19 (40)	18 (50)	
4 (9)	3 (8)	
24 (51)	15 (42)	
20 (43)	20 (56)	
27 (57)	16 (44)	
28 (60)	26 (72)	
10 (21)	2 (6)	
2 (4)	0 (0)	
294 (138-735)	411 (156-719)	

Table 2. Primary and secondary outcomes (n = 83)

Primary Outcomes	CAS (n = 47)	No CAS (n = 36)
Incidence of relapsing infection, n (%)	28 (60)	29 (81)
Time to relapse infection, days, median (IQR)	151 (78-247)	57 (36-114)
Secondary Outcome	C	AS (n = 47)

6 (13)

Table 3. LVAD infection causative organisms (n = 83)

Incidence of adverse events, n (%)

Organism	CAS (n = 47)
 Gram-positive, n (%) Methicillin-susceptible Staphylococcus aureus Methicillin-resistant Staphylococcus aureus Coagulase-negative Staphylococcus Diphtheroid Corynebacterium spp. Enterococcus faecalis Group A Streptococcus Viridans group Streptococcus 	35 (74) 15 (43) 11 (34) 2 (6) 2 (6) 1 (3) 2 (6) 1 (3) 2 (6)
Gram-negative, n (%) Pseudomonas aeruginosa Enterobacter cloacae complex Klebsiella aerogenes Moraxella nonliquefaciens Serratia marcescens Proteus mirabilis Neisseria mucosa Klebsiella pneumoniae	5 (11) 1 (20) 1 (20) 1 (20) 1 (20) 1 (20) 1 (20) 0 (0) 0 (0) 0 (0)
Fungi, n (%) Candida glabrata	1 (2) 1 (100)
Polymicrobial, n (%)	6(13)

Contact Information: Nicholas Teran 6720 Bertner Ave, MC 2-230 Houston, TX 77030 nicholas.teran@commonspirit.org

Figure 1. Chronic antimicrobial suppression agents utilized (n = 47) 16 p-value 14 0.034 12 < 0.001 ال 10 ا Count No CAS (n = 36)23 (64) 10 (43) cephalexin ofloxacin Cefdim 5 (22) 3 (13) 1 (4) 0 (0) Relapse No relapse 3 (13) 0 (0) CONCLUSIONS 1 (4) • Agent-specific suppressive efficacy was unable to be assessed due to 11 (31) limitations in the current sample size. Further examination is needed to 5 (45) determine whether specific CAS agents suppress relapse infections for a 0 (0)

• Patients in the CAS group experienced fewer relapse infections and prolonged infection-free days when compared to those not receiving CAS

longer time period

0 (0)

0 (0)

0 (0)

4 (36)

1 (9)

1 (9)

0 (0)

0 (0)

2 (6)

- Chronic suppression may be warranted in prolonging relapse-free time, particularly in infections caused by Gram-positive organisms
- CAS agents were well tolerated with only six patients requiring a change in agent

RESULTS