673

Study of Prescribing patterns and Effectiveness of Ceftolozane/Tazobactam Real-world Analysis (SPECTRA): Results from a multinational, multicenter observational study

Background

- Hospital-acquired Gram-negative (GN) infections cause significant morbidity and mortality. These infections are often difficult to treat because they are caused by organisms resistant to common therapy¹
- Ceftolozane/tazobactam (C/T) is a novel antipseudomonal cephalosporin (ceftolozane) combined with an established β-lactamase inhibitor (tazobactam) used for the treatment of serious Gram-negative bacterial infections^{2,3}
- C/T has demonstrated efficacy in registration trials to treat complicated intra-abdominal infections (cIAI), complicated urinary tract infections (cUTI), and hospital-acquired bacterial and ventilatorassociated bacterial pneumonia^{1,4,5}
- Real-world evidence on C/T is important to physicians, providers, and other stakeholders including payers to help inform clinical decisions and optimize healthcare resource use

Objective

• To describe the real-world clinical use and outcomes of C/T in a multinational, multisite study

Methods

- SPECTRA is a multinational, multicenter, retrospective inpatient observational study of patients treated with C/T in Australia, Austria, Germany, Italy, Mexico, Spain, and the UK
- Adult patients treated for ≥48 hours with C/T from 15 January 2016 to 21 November 2020 were included in the study
- Demographics, clinical characteristics, treatment management patterns, clinical outcomes, and resource utilization were analyzed in the study

Figure 1. Study design

- disease

- Age (y Male, At leas Num Immun Heart Chroni Diabet Chroni Previo ICU sta
- Surger

Microbiological findings

Figure 2. Indication for C/T treatment and pathogen

Results

• There were 687 patients from 38 participating hospitals in 7 countries • 42.1% of patients were immunocompromised, 28.4% had chronic pulmonary

Table 1. Patient characteristics

	(N = 687)
vears), mean (SD)	57.6 (17.3)
n (%)	456 (66.4%)
st one comorbidity, n (%)	563 (82.0%)
ber of comorbidities, mean (SD)	2.0 (1.6)
nocompromised, n (%)	289 (42.1%)
disease, n (%)	208 (30.3%)
ic pulmonary disease, n (%)	195 (28.4%)
tes mellitus, n (%)	178 (25.9%)
ic kidney disease	136 (19.8%)
ous hospitalizations in the 6 months prior to the index date, n (%)	376 (54.7%)
ay in the 6 months prior to the index date, n (%)	87 (23.1%)
ries in the 6 months prior to the index date, n (%)	217 (31.6%)

• The most common indications were pneumonia (29.7%), sepsis (21.4%), and cIAI (15.4%)

• 23.6% of patients had multiple sites of infection and 245 (35.7%) were polymicrobial infections

• The most common pathogen was *Pseudomonas aeruginosa* (81.0%), with 66.5% of samples positive for multidrug-resistant Pseudomonas aeruginosa

^aExacerbation of chronic respiratory infection. ^bA patient can have multiple pathogens or indications.

Previous Previous C/T durat C/T empi C/T defin Initial dos

Table 3. Treatment duration (days) by indication for index event

C/T	
duration	
(days)	
Median	

Q1;Q3

CRI, chronic respiratory infection; B&J, bone and joint; Neutro., Neutropenia; Exacerb., Exacerbation

Resource utilization

- infection

Figure 3. Hospital length of stay

data

¹Hospital Clinic, Barcelona, Spain; ²Merck & Co., Inc., Rahway, NJ, USA; ³The University of Queensland, Queensland, Australia; ⁴Medizinische Universität Wien, Spitalgasse, Austria; ⁵University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁶Università di Bologna - Via Zamboni, Bologna, Italy; ⁷Harefield Hospital, Royal Brompton, United Kingdom

Treatment management findings

Median C/T treatment duration was 12.0 days (11.0 [IQR])

• C/T was administered empirically in 28.8% of the overall cohort and in 31.8% of patients with respiratory infections

• Initial C/T dose adjustment was observed in 12.1% of patients

Table 2. Therapy characteristics

		Respiratory infections				
	Overall (N = 687)	Yes (N = 305)	No (N = 365)			
antibiotics in past 30 days, n (%)	463 (67.4%)	190 (62.3%)	260 (71.2%)			
carbapenem in past 30 days, n (%)	217 (31.6%)	90 (29.5%)	121 (33.2%)			
tion (days), median (IQR)	12.0 (11.0)	12.0 (8.0)	11.0 (14.0)			
iric therapy, n (%) ^{a,b}	171 (28.8%)	83 (31.8%)	83 (25.8%)			
nitive therapy, n (%) ^{a,b}	423 (71.2%)	178 (68.2)	239 (74.2%)			
se of C/T 3 g/8H, n (%)	138 (20.1%)	100 (33.0%)	37 (10.1%)			

^aBased on a lower denominator as some patients could not be categorized as empiric or definitive due to missing or indeterminate values. ^bEmpiric refers to initiation of C/T prior to susceptibility testing ^cDefinitive refers to initiation of C/T after susceptibility testing.

Indication for index event										
cIAI (n=106)	cUTI (n=95)	Pneumonia (n=204)	Exacerb. of CRI (n=100)	Sepsis (n=147)	Febrile neutro. (n=40)	B&J infection (n=40)	Respiratory illness (n=22)	Bacteremia (n=20)	Wound (n=35)	Overall (n = 687)
12.0	10.5	11.0	14.0	10.0	8.5	24.0	10.5	14.0	11.0	12.0
7.0;22.0	7.0;15.0	7.0;16.0	8.0;16.0	7.0;17.0	6.0;14.5	12.0; 44.0	7.0;16.0	6.5;20.5	6.0;22.0	7.0;18.0

• Approximately one-half (49.9%) of patients were admitted to the ICU, 43.4% were related to the

• Most patients (71.3%) had an infectious disease consultation with an average of 9.3 (SD 14.3) consultations per patient

• Lower median duration of hospital length of stay in patients who received empiric C/T therapy 30.5 days (Q1-Q3: 17.0-63.0) compared to definitive therapy 50.0 days (Q1-Q3: 28.0-84.0)

^aOne patient receiving empiric therapy had missing hospital length of stay data.

^bOne patient receiving definitive therapy had missing hospital length of stay data.

^cOverall sample includes patients who could not be categorized as receiving empiric or definitive therapy but contributed length of stay

Alex Soriano¹; Laura Puzniak²; David L. Paterson³; Florian Thalhalmmer⁴; Stefan Kluge⁵; Pierluigi Viale⁶; Alexandre H. Watanabe²; Engels N. Obi²; Sunny Kaul⁷

Table 4. Outcomes of overall cohort

Outcomes (N=687)	N (%) or mean (SD)
Clinical success	454 (66.1%)
In-hospital all-cause mortality	151 (22.0%)
Time from index date to death (in days)	41.0 (57.1)
In-hospital infection-related mortality	60 (8.7%)
30-day all cause re-admission	67 (9.8%)
30-day infection-related re-admission	32 (4.7%)

Figure 4. Mortality overall and by respiratory infections

Conclusions

- Many patients receiving C/T were critically ill, and immunocompromised
- C/T was used to treat multisource, polymicrobial infections, with pneumonia being the most common indication and *P. aeruginosa* the most common pathogen
- Two-thirds of samples were positive for multidrug-resistant *P*. aeruginosa
- In this multicountry, multicenter real-world analysis, C/T treated patients demonstrated clinical success and mortality rates consistent with clinical trial results despite the complexity of patient types and pathogen resistance profiles

References

- 1. Kollef MH, et al. Lancet Infect Dis. 2019;19(12):1299-1311
- 2. Cluck D, et al. Am J Health Syst Pharm. 2015;72(24):2135-2146.
- 3. Zerbaxa [Prescribing Information], Rahway, NJ: Merck & Co., Inc.; 2014.
- 4. Solomkin J, et al. Clin Infect Dis. 2015;60(10):1462-1471. 5. Wagenlehner FM, et al. Lancet. 2015;385(9981):1949-1956.

Disclosures

This study was sponsored by Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA. AHW and ENO are employees of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA. LPK was an employee of Merck Sharp & Dohme Corp at time of study

Contact

For guestions or comments, kindly reach out to Engels Obi, engels.obi@merck.com.

Copies of this presentation obtained through QR (Quick Response) codes are for persona use only and may not be reproduced without permission of the authors.

https://bit.ly/3AigZ17

Copyright © 2022 Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved.