#188

Missouri Baptist MEDICAL CENTER

BJC HealthCare

Introduction

- In the U.S., antibiotic resistance causes over 35,000 deaths annually.
- Rapid blood culture identification (BCID) can reduce unnecessary antibiotic use by decreasing time to organism identification and, theoretically, time to optimal antimicrobial therapy or discontinuation.
- Blood cultures contaminated with skin flora often result in unnecessary antimicrobial treatment, contributing to increased risk of antimicrobial resistance and antimicrobial-associated adverse events.
- Study Objective: Assess the impact of BioFire FilmArray® blood culture identification implementation on time to optimal therapy in gram-positive bloodstream infections compared to traditional organism identification (ID).
- Additional outcomes analyzed include: time to organism identification, incidence of contaminated gram-positive blood cultures, antibiotic duration, incidence of nephrotoxicity, and length of stay.

Methods

Study population:

Retrospective review of 242 adult patients admitted with a positive monomicrobial blood culture with gram-positive bacteria between February 2018 – June 2018 (Pre-BCID) and February 2019 – June 2019 (Post-BCID). Data was collected related to baseline characteristics, antibiotic administration, and adverse effects.

Statistical Analysis:

- Descriptive analysis of patient demographics, baseline characteristics, and infection data was conducted.
- Continuous data was analyzed using the Whitney Mann-U test
- Nominal Data was analyzed with Chi squared and Fisher's Exact tests

Definitions:

<u>Time to optimal targeted therapy</u> = number of hours from sample collection to when the patient is receiving the most appropriate antibiotic therapy based on organism, susceptibility, stewardship, and patient-specific factors.

Nephrotoxicity = an increase in SCr by > 0.5 mg/dL or > 50% increase from baseline for two consecutive measurements from initiation of antibiotics to 72 hours after completion/discontinuation of therapy. Patients on dialysis are excluded from this definition.

¹Missouri Baptist Medical Center, St. Louis, MO ²Northwest Infectious Disease, St. Louis, MO ³University of Health Sciences and Pharmacy; St. Louis, MO

Table 1: Patient Demographics

Male, n (% Median ag Median Ch Median Cr Median len Intensive ca Sepsis, n Infectious Contamina

Table 2: Infection Diagnoses

Contamina Skin and s Central line Osteomye' Pneumonia Urinary trac Endocard Other Unknown

Table 4: Primary & Secondary Outcomes – Overall population

Time to op Time to or Median ant Empiric var Median van Nephrotox **Optimal the**

Opportunities for antimicrobial stewardship: Rapid blood culture identification of gram-positive organisms and contaminated blood cultures, time to optimal therapy, and vancomycin use

Kelsey Olion¹, PharmD; Laura Hamann¹, PharmD, BCPS; Rebecca Jennemann¹, MT (ASCP); Julie A. Shapiro-Schere^{1,2}, D.O.; Yvonne J. Burnett^{1,3}, PharmD, BCIDP

Characteristic	Pre-BCID (n = 143)	Post-BCID (n = 89)
)	73 (51)	53 (60)
e, yr	70	70
arlson Comorbidity Index	6	6
CI, mL/min	41	46
igth of stay, days	7.1	8.1
are unit admission, n (%)	42 (29)	27 (30)
%)	68 (48)	53 (60)
Diseases consult, n (%)	78 (54)	52 (58)
nt, n (%)	79 (55)	45 (51)

1 (1)

10 (11)

ignosis, n (%)	Pre-BCID (n = 143)	Post-BCID (n = 89)
nt	76 (53)	45 (51)
oft tissue infection	16 (11)	5 (6)
e-associated infection	5 (4)	4 (5)
litis	3 (2)	5 (6)
/pulmonary infection	9 (6)	6 (7)
ct infection	4 (3)	2 (2)
tis	12 (8)	4 (5)
	6 (4)	6 (7)
	12 (8)	12 (14)

-	-		
Outcome	Pre-BCID (n = 143)	Post-BCID (n = 89)	p value
timal therapy, hr	53.3	28	<0.001
ganism ID, hr	60.2	23.5	<0.001
ibiotic duration, days	5.72	6.06	0.492
ncomycin, n (%)	108 (76)	63 (71)	0.425
comycin duration, hr	35.1	25.2	0.231
icity, n (%)	17 (12)	23 (26)	0.008
erapy selected, n (%)	119 (83)	83 (93)	0.028

Coagulase-negative Staphy
S. epidermidis
S. hominis
S. haemolyticus
Unidentified
Staphylococcus aureus
MRSA
MSSA
Enterococcus
E. faecalis
E. faecium
Streptococcus spp.

Table 5: Primary & Secondary Outcomes - Contaminants

Outcome

Time to optimal therapy, h Time to organism ID, hr Median antibiotic duration, o Empiric vancomycin, n (%) Median vancomycin duration Nephrotoxicity, n (%) Optimal therapy selected, n

	Pre-BCID (n = 79)	Post-BCID (n = 45)	p value
r	54	27.3	<0.001
	54.6	26.9	<0.001
ays	3.85	4.35	0.591
	54 (67)	27 (33)	0.433
n, hr	27.5	16.6	0.253
	6 (8)	15 (33)	0.006
(%)	71 (90)	44 (98)	0.154

2 (1)

13 (9)

Conclusions

- Rapid BCID significantly improved time to optimal therapy
- Rapid BCID also was associated with:
- Reduced time to organism identification
- Improved rates of optimal therapy
- Downward trend in vancomycin use
- Similar results were seen in contaminated blood cultures
- Further coordination with the antimicrobial stewardship program may improve appropriate antimicrobial therapy selection and duration for patients with positive blood cultures

Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have been a direct or indirect interest in the subject matter of this presentation.

Corresponding author: Kelsey Olion kelsey.olion@va.gov

HEALTH SCIENCES & PHARMACY

ST. LOUIS COLLEGE OF PHARMACY

Median 53.3 hours to optimal antibiotic therapy

> Median 60.2 hours to organism ID

83% with optimal antibiotic selection

Median 28 hours to optimal antibiotic therapy

> Median 23.5 hours to organism ID

93% with optimal antibiotic selection

