Imipenem-relebactam activity and genotypic characteristics of carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa isolates from Latin American infections – Study for Monitoring Antimicrobial Resistance Trends (SMART) 2017-2020

Background

Imipenem/relebactam (IMI/REL) is a combination of imipenem/cilastatin (IMI) with relebactam, an inhibitor of class A and C β-lactamases, and has been approved in the US and EU, but not in Latin America.

This report evaluates the in vitro activity of IMI/REL and comparators against Latin America (LATAM) Enterobacterales and P. aeruginosa (PSA) and the frequency of carbapenemase encoding genes (CEG) among gram-negative bacilli (GNB) isolated from LATAM through the SMART program (2017-2020).

Methods

There were 21,606 GNB isolates collected in 10 LATAM countries (2017-2020). MICs for amikacin (AK), ceftazidime-avibactam (C-A), ceftolozane/tazobactam (C/T), and IMI/REL were determined by broth microdilution and interpreted by CLSI. A subset of carbapenem-resistant *Enterobacterales* and *P. aeruginosa* was selected for characterization of carbapenemase encoding genes by PCR followed by DNA sequencing.

Results

Escherichia coli (N=9,872; EC) tested susceptible to >96% of all antibiotics analyzed; for *P. aeruginosa* (N=4,528), C/T and C-A had the best susceptibility rates (85.7%) and 86.6%, respectively); for *Enterobacter cloacae* (N=1,091; ECL) and *Klebsiella* pneumoniae (N=6,115; KPN), we note that only IMI/REL and C-A were ≥95% susceptible.

Table 1. Antimicrobial susceptibility of *Enterobacterales* and *P. aeruginosa* (full data analysis = 21,606)

Species	N=21,606	Amikacin	Ceftazidime- avibactam	Ceftolozane/ tazobactam	Imipenem/ relebactam
Enterobacter cloacae	1,091	1,034 (94.8%)	796 (95.7%)	815 (74.7%)	1,048 (96.1%)
Escherichia coli	9,872	9,723 (98.5%)	7,441 (99.4%)	9,495 (96.2%)	9,804 (99.3%)
Klebsiella pneumoniae	6,115	5,580 (91.2%)	4,616 (95.6%)	4,250 (69.5%)	5,789 (94.7%)
Pseudomonas aeruginosa	4,528	3,825 (84.5%)	3,095 (86.6%)	3,882 (85.7%)	3,645 (80.5%)

Note: C-A MICs are only reported from 2018-2020. Thus, the total number of isolates for which the in vitro susceptibility was tested is different.

The profile of 2,845 carbapenem-resistant isolates was analyzed and the main isolated agent in most countries was KPN, corresponding to 55% (1,470), except in Mexico, Panama, and Venezuela, where PSA was the main carbapenemase producer.

Presented at IDWeek; Washington, DC; October 19-23, 2022.

Figure 1. Most common carbapenemase-producing bacteria in LATAM (n = 2,845)

According to table 2, the *bla*_{kpc-2.3} were found in KPN as follow: 85.1%, 80.2%, 86.2%, 83.3% and 96.5% in Argentina, Brazil, Colombia, Ecuador, and Puerto Rico, respectively; Guatemala, Mexico, and Venezuela presented *bla*_{NDM-1} in 74.3%, 44.1%, and 51.4%, respectively.

Among ECL, *bla*_{KPC-2} (35.7%-Brazil, 60.9%-Colombia) and *bla*_{NDM-1} (45.7%-Mexico, 50.0%-Venezuela) were most frequent, *bla*_{IMP-18} (38.8%) were observed in Puerto Rico and we observed first-time-reported bla_{kpc-45} in 27.7%.

PSA expressed *bla*_{kpc-2} in Colombia (33.3%), *bla*_{VIM-2} in Chile and Venezuela (44.3%, 58.8%) and *bla*_{spm-1} occurring only in Brazil (6.9%).

M.D.N.D. Paula¹; J.P.P. Albor⁵

¹Global Medical Affairs, MSD Brazil, São Paulo, Brazil; ²Mandaqui Hospital, São Paulo, Brazil; ³Universidade Federal de São Paulo – UNIFESP, Laboratório Alerta, Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina – EPM, São Paulo, Brazil; ⁴Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Catolica do Paraná, Curitiba, Brazil; ¹Global Medical Affairs, MSD in Brazil, São Paulo, Brazil - Sao Paulo (Brazil), ⁵Global Medical Affairs, MSD Colombia, Bogotá, Colombia

Table 2. Most frequent CEG detected among carbapenemase-resistant isolates in Latin American countries (genotypical sample analyzed n = 2,845)*

Country	
Argentina	
Brazil	
Chile	
Colombia	
Guatemala	
Mexico	
Panama	
Ecuador	
Puerto Rico	
Venezuela	
*It was not possible to determine if the	isolate ł

Conclusions

The frequency of CEG is a threat in LATAM, mostly in *Enterobacterales*, whereas PSA as expected, has a lower frequency, but is still a concern in some countries. It was also noted that in all countries, except Colombia, Ecuador and Puerto Rico, the most prevalent carbapenemase for PSA was class B enzymes. In the LATAM scenario, IMI/REL has shown relevant activity against CEG producers, showing it is an option for treatment infections caused by MDR strains.

G. Mizuno¹; E.M. Beirão²; A.C. Gales³; F.F. Tuon⁴; J. Ferrari¹; F.D.S. Santiago¹; A.A.A. Alcântara¹; T.J. Polis¹;

Carbapenem-resistant bacteria	Main Carbapenemase
(n - %)	(%)
K. pneumoniae (215 - 59.7%)	KPC-2 (76.4%)
P. aeruginosa (119 - 33.1%)	VIM-2 (3.4%)
E. cloacae (18 - 5.0%)	KPC-2 (38.9%)
E. coli (8 - 2.2%)	KPC-type (25.0%)
<i>K. pneumoniae</i> (390 – 62.7%)	KPC-2 (79.2%)
<i>P. aeruginosa</i> (186 - 29.9%)	SPM-1 (6.9%)
<i>E. cloacae</i> (28 - 4.5%)	KPC-2 (35.7%)
<i>E. coli</i> (18 - 2.9%)	KPC-2 (77.8%)
<i>K. pneumoniae</i> (196 – 48.7%)	KPC-2 (11.2%)
<i>P. aeruginosa</i> (185 – 46.0%)	VIM-2 (44.3%)
<i>E. cloacae</i> (12 – 3.0%)	VIM-1 (25.0%)
<i>E. coli</i> (9 - 2.2%)	KPC-2 (11.1%)
<i>K. pneumoniae</i> (181 – 45.8%)	KPC-3 (53.0%)
<i>P. aeruginosa</i> (162 – 41.0%)	KPC-2 (33.3%)
<i>E. coli</i> (29 - 7.3%)	KPC-2 (65.5%)
<i>E. cloacae</i> (23 – 5.8%)	KPC-2 (60.9%)
<i>K. pneumoniae</i> (109 – 64.5%)	NDM-1 (74.3%)
E. coli (30 - 17.7%)	NDM-1 (66.6%)
<i>P. aeruginosa</i> (26 – 15.4%)	KPC-2 (19.2%)
<i>E. cloacae</i> (4 – 2.4%)	NDM-1 (75.0%)
<i>P. aeruginosa</i> (208 – 62.6%)	VIM-2 (8.6%)
<i>K. pneumoniae</i> (68 – 20.4%)	NDM-1 (44.1%)
<i>E. coli</i> (35 - 10.5%)	NDM-5 (31.4%)
<i>E. cloacae</i> (21 – 6.3%)	NDM-1 (45.7%)
P. aeruginosa (74 – 71.8%)	VIM-2 (25.7%)
K. pneumoniae (22 – 21.3%)	KPC-3 (45.4%)
E. cloacae (5 – 4.8%)	NDM-1 (20.0%)
E. coli (2 - 1.9%)	NDM-1 (50.0%)
<i>K. pneumoniae</i> (138 – 78.4%)	KPC-2 (52.2%)
<i>P. aeruginosa</i> (19 - 10.8%)	VIM-2 (5.3%)
<i>E. coli</i> (16 - 9.1%)	KPC-2 (31.2%)
<i>E. cloacae</i> (3 - 1.7%)	KPC-2 (33.3%)
<i>K. pneumoniae</i> (116 – 61.0%)	KPC-2 (85.3%)
<i>P. aeruginosa</i> (52 - 27.4%)	KPC-2 (19.2%)
<i>E. cloacae</i> (18 - 9.4%)	KPC-2 (38.8%), KPC-45 (27.7%) and IMP-18 (38.8%)
<i>E. coli</i> (4 - 2.1%)	KPC-2(100%)
P. aeruginosa (51 – 53.3%)	VIM-2 (58.8%)
K. pneumoniae (35 – 36.4%)	NDM-1 (51.4%)
E. cloacae (6 – 6.3%)	NDM-1 (50.0%)
E. coli (4 - 4.2%)	NDM-1 (50.0 %)
nave one or more genes.	

Copies of this presentation obtained through QR (Quick Response) codes are for personal use only and may not be reproduced without permission of the authors.

https://bit.ly/3pz1uU7

Copyright © 2022 Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved.