Poster Number 1064 Phone Number: 216-218-4845 E-mail: elhaddk@ccf.org

Intra-Host Mutation Rate and Diversity of SARS-CoV-2 El Haddad K¹, Adhikari T², Tu ZJ³, Cheng Y³, Leng X², Zhang X², Rhoads D³, Ko J³, Worley S⁴, Rubin B³, Li J², Esper F¹

¹Center for Pediatric Infectious Disease, ³Robert J. Tomsich Pathology and Laboratory Medicine Institute, ⁴Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH ²Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH

Background & Aims

Our understanding of SARS-CoV-2 evolution is limited. Most estimates arise from analysis of global databases populated with unrelated sequences and have ranged from 21.6-29 substitutions/genome/year over the course of the pandemic. SARS-CoV-2 polymerase contains a proofreading function encoded by NSP-14 limiting change. Additionally, virus evolution may be influenced by patient comorbidity. Intra-host mutational rate during infection remains poorly studied.

Aims: Determine the intra-host mutational rate during the course of infection.

a. Compare mutation rates between isolates with and without mutation in NSP-14

b. Compare mutation rates among patients with different comorbidities

Material and Methods

Inclusion Criteria

Adults with >1 positive SARS-CoV-2 NP sample collected 5 -60 days apart from 3/17/2020 to 5/27/2020

Exclusion Criteria

Patient paired samples identified with discordant lineage/ clades suggesting re-infection, pairs with $CT \ge 30$ and pairs with interval days < 5 or > 60.

Criteria for Sequencing and Mutation Calling

- Viral Genome analysis by MiSEQ
- Map to the reference Wuhan-Hu-1 (NC_045512.2)
- Mutation Calling: Depth \geq 10, Allele Frequency(AF) \geq 0.1, AF \geq 0.5, AF \geq 0.75 and manual review
- Mutation changes at corresponding AF identified in initial and subsequent pairs and quantified.

Calculation of Mutation Rates: F81 and JC69 modeling Both models assume equal mutation rates across different nucleotides allowing for a smaller number of model parameters.

For both models, mutation rates were estimated by the use of maximum likelihood algorithms.

- JC69 assumes equal base frequencies
- F81 allows for variable base frequencies with equal substitutions providing a more realistic calculation of the mutation rate.

Calculate and Compare mutation rates between isolates with (Δ NSP-14) and without (wtNSP-14) mutation in **NSP-14**

Calculate and compare mutation rates among patients by age and different comorbidities.

• Pulmonary, Cardiac, Endocrine, Immune

Table 1. Patient Demog

Total pairs

Median interval (d) [IQR]

Demographics

Median Age (yr) [IQR]

Males

Race

White

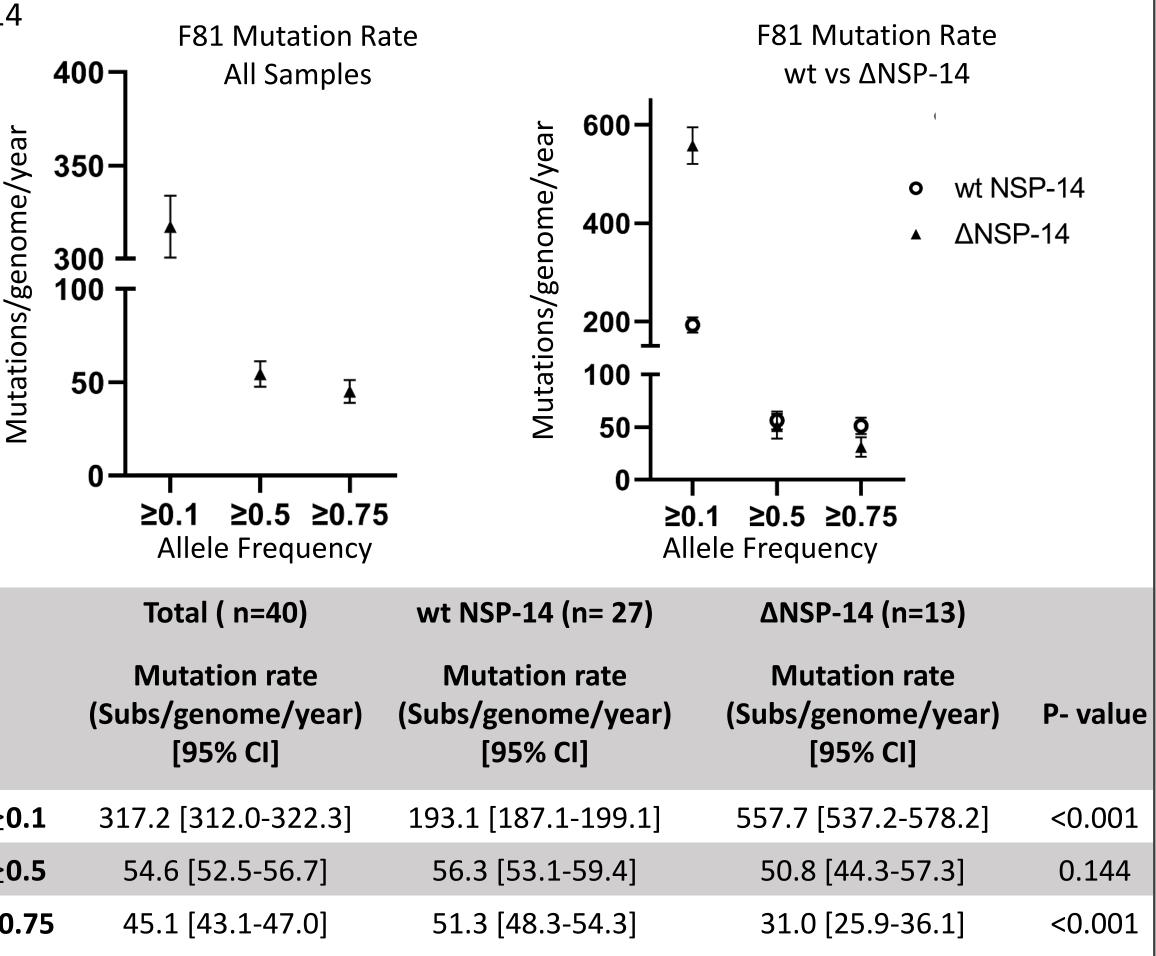
African American

Others

Comorbidity

Any

Endocrine

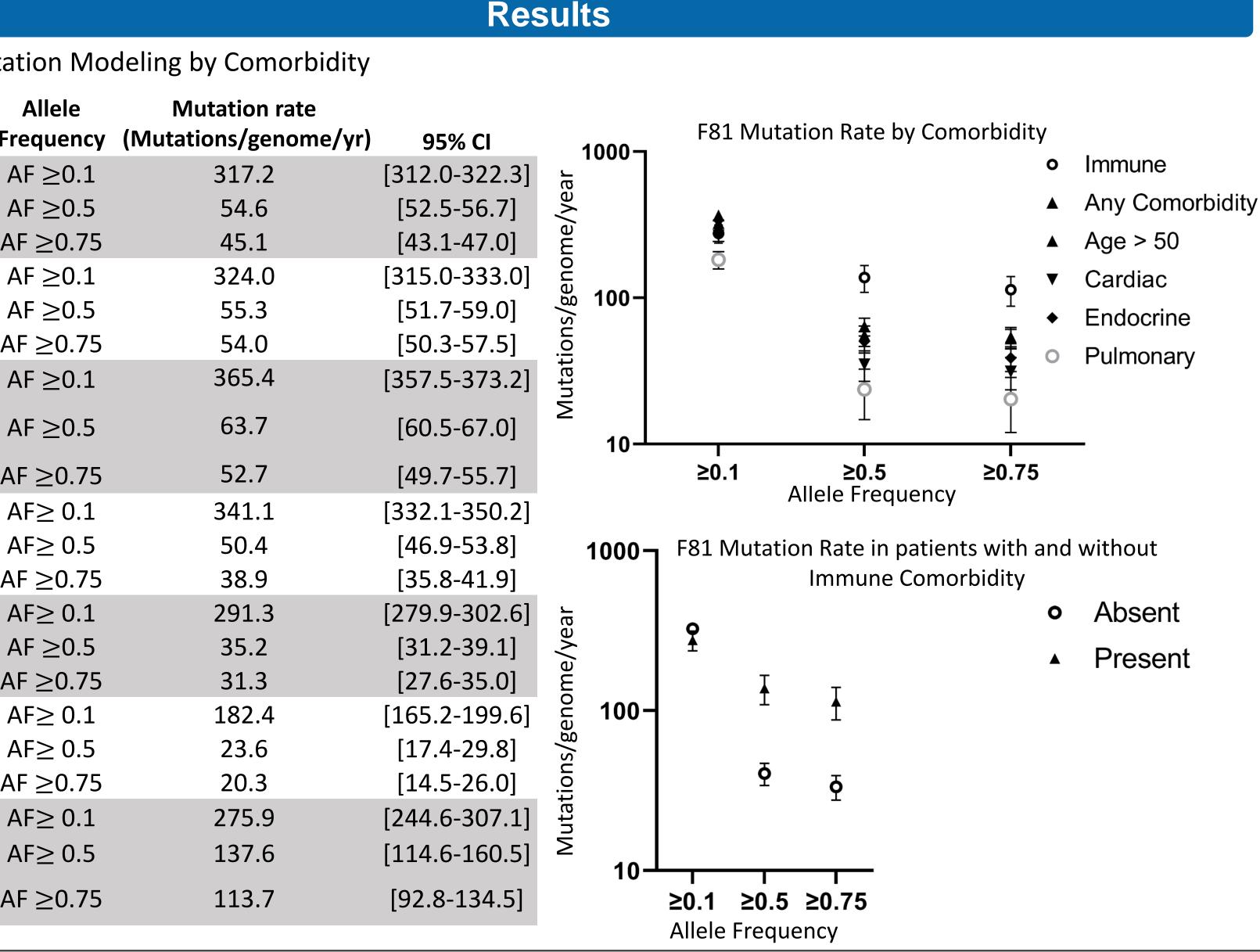

Cardiac

Pulmonary

Immune/Oncologic

p-values: a=Wilcoxon rank sum test, b=Pearson's chi-square test, c=Fisher's Exact test.

NSP-14



AF ≥0.1	317.2 [312.0-3
AF ≥0.5	54.6 [52.5-5
AF ≥0.75	45.1 [43.1-4

	Re	sults		
gra	phics of Paired S			
	Total	wt NSP-14	Δ NSP-14	P-value
	40	27 (67.5%)	13 (32.5%)	
	13[8.3-19.8]	13 [8- 21]	13 [8.5-19.5]	0.93 ^a
	54 [30.3-65.8]	65 [30-69]	51 [31-61.5]	0.51ª
	20 (50.0%)	13 (48.1%)	7 (53.8%)	0.74 ^b
	26 (65.0%)	15 (55.6%)	11 (84.6%)	0.029 ^c
	10 (25.0%)	8 (29.6%)	2 (15.4%)	
	4 (10.0%)	4 (14.8%)	0 (0%)	
	28 (70%)	18 (66.7%)	10 (77.9%)	0.72 ^c
	23 (57.5%)	14 (51.9%)	9 (69.2%)	0.30 ^b
	17 (42.5%)	11 (40.7%)	6 (46.2%)	0.75 ^b
	8 (20.0%)	5 (18.5%)	3 (23.1%)	0.99 ^c
	6 (15.0%)	5 (18.5%)	1 (7.7%)	0.64 ^c

Figure 1. F81 Mutation Modeling by Allele Frequency with and without Alteration in

Figure 2. F81 Mu	ta
	F
Total	
(n=40)	A
Age > 50 (n=23)	A
(11-23)	
Any Comorbidity	
(n=28)	A
(11-20)	
Endocrine	
(n=23)	A
Cardiac	
(n=17)	A
Pulmonary (n=8)	A
(11-0)	-
Immune/Oncologic	
(n=6)	A
 Intra-host 	r
times high	
through p	0

Conclusion

mutation rate is over 2 times greater at AF ≥0.75 (WHO er at AF \geq 0.5 and nearly 15 times higher at AF \geq 0.1 than opulation based surveillance.

Mutation changes in NSP-14 were found to have significantly eleva rate only at low AF but significantly depressed at high AF.

Enhanced mutation rates occurred in immunocompromised patien while mutation rates in patients with underlying cardiac, pulmonar comorbidities were not significantly elevated.

SARS-CoV-2 intra-host dynamics have crucial implications on curre pandemic planning, development of vaccines, and antiviral therapy

) standard), 2.5 h those reported ated mutation
ated mutation
nts at high AF, ry or endocrine
ent and future by.

