Poster: 1262749

Effectiveness and Durability of Dolutegravir (DTG) based Regimens in Older People Living with HIV (PLWH) from the Veterans Aging Cohort Study (VACS)

Lei Yan, PhD^{1,2}; Cassidy Henegar, PhD³; Kirsha S. Gordon, PhD^{2,4}; Charles Hicks, MD³; Vani Vannappagari, PhD³; Amy C. Justice, MD^{2,4}; Mihaela Aslan, PhD^{1,2} ¹Veterans Affairs (VA) Cooperative Studies Program Clinical Epidemiology Research Center (CSP-CERC), VA Connecticut Healthcare System, West Haven, CT ²Yale University, New Haven, CT; ³ViiV Healthcare, NC; ⁴Veterans Aging Cohort Study (VACS), West Haven, CT

Introduction

- HIV management among older people living with HIV (PLWH) may be complicated by the presence of multiple comorbidities and polypharmacy. [1,2]
- There is currently limited data on treatment patterns and clinical outcomes in older PLWH, particularly for newer drug classes like integrase strand transfer inhibitors (INSTIs).
- The Veterans Aging Cohort (VACS) is a large-scale research study that includes data from >60,000 veterans with HIV, the majority being \geq 50 years of age.
- Utilizing data from the VACS, this study evaluated effectiveness and durability of modern 3-drug antiretroviral regimens among older PLWH.

Methods

Study Population

- Retrospective observational cohort study utilizing electronic health record and pharmacy data from the VACS
- Inclusion Criteria:
- A diagnosis of HIV-1
- Prescribed a regimen containing the core agents dolutegravir (DTG), bictegravir (BIC), elvitegravir (EVG), raltegravir (RAL), or darunavir (DRV) plus 2 nucleoside reverse transcriptase inhibitors (NRTIs) for the first time between 1/1/2014 and 3/31/2020
- Age \geq 50 when initiating the regimen

Follow-up

 Included PLWH were followed from regimen initiation (baseline) until regimen discontinuation, death, loss to follow-up, or end of study (9/30/2020).

Outcome Definitions

- Suppression: viral load (VL) < 50 copies/mL
- Low-viremia: 50 copies/mL \leq VL < 200 copies/mL
- Virologic failure: 2 consecutive VLs \geq 200 copies/ml, or 1VL \geq 200 copies/ml followed by regimen discontinuation within 4 months
- Regimen discontinuation: change in regimen core agent
- Change in CD4 cell count: change in CD4 cells/mm³ between baseline and 6and 12-months post-baseline

Statistical Methods

- Outcomes were stratified by antiretroviral therapy (ART) experience (ARTnaive and ART-experienced).
- Pairwise comparison was made between DTG-based regimen and each of the other 3-drug regimens with DTG as the referent.
- Outcomes were compared using linear regression or logistic regression (all other outcomes).
- Inverse probability of treatment weighting was used to adjust for confounding by treatment assignment. Variables included: age, sex, race/ethnicity, region, smoking status, alcohol use, drug use, homelessness status, time on ART, baseline CD4 cell count, baseline viral load, and baseline VACS index.

IDWeek 2022; October 19-23, 2022; Virtual and Washington, DC

Results

Table 1. Baseline	characteristics of ART-naive PLWH	ł –

	DTG	BIC	EVG	RAL	DRV
	(N=912)	(N=432)	(N=751)	(N=159)	(N=235)
Sex: Male, n (%)	864 (95)	420 (97)	720 (96)	154 (97)	228 (97)
Age (>= 65), n (%)	204 (22)	120 (26)	157 (21)	34 (21)	62 (26)
Race/Ethnicity, n (%)					
Hispanic	44 (5)	36 (8)	46 (6)	20 (13)	22 (9)
Black	472 (52)	212 (49)	370 (49)	69 (43)	123 (52)
White	331 (36)	158 (37)	293 (39)	64 (40)	76 (32)
Other	65 (7)	26 (6)	42 (6)	6 (4)	14 (6)
Smoking status, n (%)					
Current	446 (49)	182 (42)	338 (45)	88 (55)	113 (48)
Past	283 (31)	157 (36)	243 (32)	34 (21)	68 (29)
Never / Unknown	83 (20)	93 (22)	170 (23)	37 (23)	54 (23)
Unhealthy alcohol use or alcohol-related diagnosis (recent 12m), n (%)	196 (22)	95 (22)	182 (24)	35 (22)	46 (20)
Drug abuse and dependence ¹ (recent 12m), n (%)	128 (14)	55 (13)	98 (13)	32 (20)	37 (16)
Homeless (recent 12m), n (%)	103 (11)	48 (11)	90 (12)	20 (13)	37 (16)
Hepatitis C coinfection, n (%)	47 (5.2)	28 (6.5)	36 (4.8)	10 (6.3)	8 (3.4)
Charlson comorbidity index, mean (sd)	7.8 (2.1)	7.9 (2.0)	7.3 (1.8)	8.0 (2.3)	7.5 (1.9)
CD4 (cells/uL), mean (sd)	439 (288)	431 (300)	441 (279)	419 (298)	324 (268)
Viral load (log copies/mL), mean (sd)	4.5 (0.8)	4.4 (0.9)	4.5 (0.8)	4.4 (0.9)	4.4 (0.9)
Virologically suppressed ² , n (%)	209 (28)	116 (32)	172 (28)	38 (33)	59 (33)
Low viremia ² , n (%)	25 (3.4)	12 (3.3)	31 (5.1)	6 (5.2)	11 (6.2)
VACS index 2.0, mean (sd)	61 (20)	60 (19)	58 (17)	62 (20)	66 (22)
Number of non-ARV co-medications, mean (sd)	9 (7)	8 (7)	8 (6)	8 (6)	7 (6)
Tenofovir- or abacavir-containing regimen, n (%)	908 (100)	432 (100)	751 (100)	155 (98)	228 (97)

Table 2. Baseline characteristics of ART-experienced PLWH

	DTG	BIC	EVG	RAL	DRV
	(N=5097)	(N=1765)	(N=3580)	(N=1486)	(N=1879)
Sex: Male, n (%)	4952 (97)	1713 (97)	3482 (97)	1440 (97)	1834 (98)
Age (>= 65), n (%)	1747 (34)	670 (38)	993 (28)	475 (32)	448 (24)
Race/Ethnicity, n (%)					
Hispanic	297 (6)	154 (9)	278 (8)	162 (11)	123 (7)
Black	2627 (52)	822 (47)	1753 (49)	650 (44)	1126 (60)
White	1972 (39)	719 (41)	1390 (39)	626 (42)	553 (29)
Other	201 (4)	70 (4)	161 (4)	48 (3)	78 (4)
Smoking status, n (%)					
Current	2575 (51)	819 (46)	1719 (48)	768 (52)	1084 (58)
Past	1436 (28)	558 (32)	1061 (30)	381 (26)	476 (25)
Never / Unknown	1086 (21)	388 (22)	800 (22)	337 (23)	319 (17)
Unhealthy alcohol use or alcohol-related diagnosis (recent 12m), n (%)	985 (19)	310 (18)	626 (18)	266 (18)	409 (22)
Drug abuse and dependence ¹ (recent 12m), n (%)	847 (17)	228 (13)	490 (14)	249 (17)	418 (22)
Homeless (recent 12m), n (%)	459 (9)	133 (8)	320 (9)	126 (9)	253 (14)
Hepatitis C coinfection, n (%)	946 (19)	209 (12)	435 (12)	365 (25)	412 (22)
Charlson comorbidity index, mean (sd)	8.9 (2.7)	8.3 (2.4)	8.2 (2.3)	9.3 (3.0)	8.7 (2.5)
CD4 (cells/uL), mean (sd)	567 (270)	610 (265)	568 (270)	516 (270)	467 (274)
Viral load (log copies/mL), mean (sd)	3.5 (0.7)	3.5 (0.7)	3.5 (0.8)	3.5 (0.7)	3.8 (0.9)
Virologically suppressed ² , n (%)	3760 (79)	1306 (82)	2493 (76)	1026 (79)	1028 (62)
Low viremia ² , n (%)	345 (7.3)	95 (6.0)	225 (6.9)	88 (6.7)	173 (10)
VACS index 2.0, mean (sd)	51 (18)	51 (16)	47 (16)	54 (18)	56 (19)
Number of non-ARV co-medications, mean (sd)	11 (7)	10 (7)	9 (6)	12 (7)	11 (7)
Time on ARV (years), mean (sd)	12.2 (6.7)	13.8 (6.9)	11.9 (6.6)	12.0 (6.9)	12.1 (6.8)
Tenofovir- or abacavir-containing regimen, n (%)	5054 (99)	1765 (100)	3580 (100)	1394 (94)	1798 (96)

¹ Opioids, amphetamines, cannabis, cocaine, hallucinogens, sedatives, hypnotics, anxiolytics, tranquilizers, and barbituates. ² The proportions were calculated based on the number of those who had a viral load measurement.

Figure 1. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of treatment outcomes for those receiving BIC-, EVG-, RAL-, and DRV-based 3-drug regimens compared to those receiving DTG-based 3-drug regimen

ART-Naive

Figure 2. Mean differences (95% CIs) of change in CD4 cell count from baseline to the end of 6 months

aimon	Re
ginen	201
DRV vs. DTG	20
RAL vs. DTG	Epi
EVG vs. DTG	
BIC vs. DTG	Ack

References: 1. High, Kevin P. et al. JAIDS. 2012;60:S1-S18. 2. Justice, Amy C. et al. AIDS. 18;32:739-749. **3.** Justice, Amy C. et al. *Med Care*. 2006;44:S13-S24. **4.** Robins, James M. et al. idemiology. 2000;11:550-560. 5. Austin, Peter C. et al. Statist. Med. 2015;34:3661-3679

nowledgments: This research was sponsored by ViiV Healthcare. This study was supported by the Veterans Aging Cohort Study, which is a CHAART Cooperative Agreement funded by National Institutes of Health NIAAA (P01 AA029545, U24-AA020794, U01-AA020790, U24-AA022001, U01-AA026224, U10 AA013566-completed) and in kind by the US Department of Veterans Affairs. The VACS study was approved by the institutional review boards of Yale University (ref Yale: 0309025943) and VA Connecticut Healthcare System (ref VA: AJ0001). It has been granted a waiver of informed consent and is compliant with the Health Insurance Portability and Accountability Act. Disclaimer: The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Presenting author: Vani Vannappagari 410 Blackwell St. Durham, NC 27701 vani.x.vannappagari@viivhealthcare.com +19193494215

Figure 3. Mean difference of absolute change in BMI at 6 months

0.00 [-0.31, 0.32] -0.27 [-0.65, 0.12] -0.01 [-0.21, 0.18] 0.02 [-0.50, 0.54]

-0.07 [-0.14, 0.01] -0.05 [-0.13, 0.03] -0.05 [-0.11, 0.01] 0.10 [0.00, 0.19]

Regimen DRV vs. DTG - RAL vs. DTG 🔶 EVG vs. DTG BIC vs. DTG

Virological measures and duration of regimens (Figure 1)

- Those on DTG were more likely suppressed at 6 months compared to those on DRV among ART-naive PLWH, and more likely suppressed at 6 and 12 months compared to DRV and RAL among ART-experienced PLWH. DTG-based regimens demonstrated reduced odds of virologic failure compared to DRV among ART-naïve and compared to DRV, RAL, and EVG
- Regardless of ART experience, discontinuation was higher for RAL and DRV compared to DTG. Discontinuation was lower for BIC compared to DTG at 6 and 12 months among ART-experienced PLWH.
- Discontinuations of DTG based regimen at 12 months included 52% switching from multi tablet regimen to single tablet regimen, and 47% switching to remove abacavir from the regimen
- For both naive and experienced PLWH, those on DTG had greater increases in CD4 cell counts at 6 and 12 months compared to those on DRV or RAL.
- Change in BMI was comparable between regimens 6-months post-baseline • Changes in blood pressure and lipids over 12 months of baseline regimen exposure were comparable, although missing data were frequent and confidence intervals were wide (data not shown).

- For both ART-naïve and ART-experienced PLWH >50 years old, treatment responses during the first 12 months of follow-up were similar for those taking
- DTG-based regimens demonstrated greater effectiveness and durability