Stanford B M E D I C I N E

Health Care

Background

- AmpC beta-lactamases produced by members of the *Enterobacterales* order induced by beta-lactam exposure can cause treatment failure¹
- Cefepime/carbapenems are effective antibiotics for AmpC-producing organisms, but results are less clear for piperacillin-tazobactam²⁻⁴
- Data to describe treatment outcomes for serious infections due to AmpC-producing organisms specifically in immunocompromised patients are lacking

Objective

• To compare rates of clinical and microbiological failure between piperacillin-tazobactam and cefepime or a carbapenem in immunocompromised patients with bacteremia due to organisms with inducible AmpC

Methods

- **Study Design:** Retrospective, IRB-approved, cohort study comparing definitive treatment with either piperacillin/tazobactam versus a carbapenem or cefepime for bacteremia due to organisms with inducible AmpC in immunocompromised patients
- Conducted January 1, 2016, to December 31, 2021, at Stanford Health Care

•	Inclusion Criteria	 Adult (<u>></u>18 years old) immunocompromised inpatients^a Blood culture growing cefoxitin-non-susceptible Enterobacterales
•	Exclusion Criteria	 Polymicrobial bacteremia Death within 72 hours of index blood culture Antibiotic treatment at outside facility for <i>Enterobacterales</i> Pregnancy/incarceration
•	Primary Endpoint	 Composite of: Clinical failure (30-day mortality, white blood cell >12k or maximum temperature ≥38°C on days 5-7) Microbiological failure between days 3-5 (blood culture with index organism) Microbiological relapse between days 5-30 (growth from sterile site with index organism)
•	Secondary Endpoints	 Hospital length of stay Intensive care unit length of stay <i>Clostridioides difficile</i> infection
•	Statistical Analysis	 Analyses included independent t-test for continuous data and chi square test for categorical data Logistic regression using an a priori model was constructed P-values <0.05 were considered statistically significant

Treatment and Outcomes of Cefoxitin-Non-Susceptible Serratia marcescens, Klebsiella aerogenes, Citrobacter freundii, Enterobacter cloacae, and Morganella morganii Bacteremia with Piperacillin/Tazobactam Versus Cefepime or Carbapenem in Immunocompromised Patients

Brian Lu, Pharm.D.¹, Miranda Wong, Pharm.D., BCCCP², David Ha, Pharm.D., Ph.D.³, Niaz Banaei, M.D.⁴, Stanley Deresinski, M.D.⁴, Calvin Diep, Pharm.D., BCCCP¹ ¹Stanford Health Care, Stanford, CA; ²Lucille Packard Children's Hospital, Stanford, CA; ³UCSD Skaggs School of Pharmaceutical Sciences, La Jolla, CA; ⁴Stanford Medicine, Stanford, CA

Results

Table 1. Baseline Demographics				Table 2. Microbiological Data			
Charactoristic	Piperacillin- Tazobactam	Cefepime or Carbapenem			Piperacillin- Tazobactam	Cefepime or Carbapenem	
Characteristic	(n=35)	(n=46)	p-value	Microbiologic Data, n (%)	(n=35)	(n=46)	p-value
Male, n (%)	24 (68.6)	35 (76.1)	0.451	Organism			
Age (years), mean (SD)	61.7 (12.9)	64.9 (13.8)	0.277	Moderate-High Risk of AmpC	26 (74.3)	32 (69.6)	
β-lactam Allergy, n (%)	3 (8.6)	11 (23.9)	0.070	Enterobacter cloacae	19 (54.3)	27 (58.7)	
ICU Admission, n (%)	9 (25.7)	16 (34.8)	0.381	Citrobacter freundii	2 (5.7)	3 (6.5)	0.641
Renal Replacement Therapy ^a , n (%)	2 (5.7)	1 (2.2)	0.403	Klebsiella aerogenes	5 (14.3)	2 (4.4)	0.041
Charlson Comorbidity Index, mean (SD)	6.4 (3.0)	5.7 (2.3)	0.304	Low Risk of AmpC	9 (25.7)	14 (30.4)	
Pitt Bacteremia Score, mean (SD)	0.9 (1.9)	2.2 (3.3)	0.042	Serratia marcescens	9 (25.7)	13 (28.3)	
Infectious Diseases Consult, n (%)	17 (48.6)	25 (54.4)	0.606	Morganella morganii	0 (0.0)	1 (2.2)	
Immunocompromised Criteria, n (%)				Bacteremia Source			
Chemotherapy	17 (48.6)	23 (50.0)	0.899	Urinary Tract Infection	7 (20.0)	3 (6.5)	
High-Dose Corticosteroids ^b	1 (2.9)	1 (2.2)	0.844	Intraabdominal	16 (45.7)	23 (50.0)	
Immunosuppressive Drug	9 (22.9)	10 (22.2)	0.946	Vascular Catheter-related	2 (5.7)	3 (6.5)	
Severe Neutropenia ^c	3 (8.6)	15 (32.6)	0.010	Surgical Site	2 (5.7)	1 (2.2)	0.420
Solid Organ Transplant	4 (11.4)	3 (6.5)	0.436	Pneumonia	3 (8.6)	2 (4.4)	0.450
Bone Marrow Transplant	1 (2.9)	7 (15.2)	0.065	Mucositis/Neutropenia	2 (5.7)	9 (19.6)	
Leukemia/Lymphoma	7 (20.0)	17 (37.0)	0.098	Musculoskeletal	0 (0)	1 (2.2)	
^a Within 24 hours before to 24 hours after index culture		Skin/Soft Tissue Infection	2 (5.7)	2 (4.4)			
^b 20 mg daily prednisone or equivalent for > 14 days			Unknown	1 (2.9)	2 (4.4)		
^c Absolute neutrophil count <500 cells/µL				Source Control Achieved	28 (80.0)	32 (69.6)	0.288
Abbreviations: ICU, intensive care unit; SD, standard deviation				Appropriate Initial Antibiotic	33 (94.2)	44 (95.7)	0.779

Figure 1. Logistic Regression for Clinical or Microbiological Failure

<u>Moderate-to-High Risk AmpC-Producing Organism</u>: Enterobacter cloacae, Citrobacter freundii, Klebsiella aerogenes

Clinical or Microbiological Failure						
	Odds Ratio (95% Confidence Interval)	p-value				
	0.303 (0.093-0.991)	0.048				
	0.801 (0.229-2.789)	0.727				
	1.070 (1.014-1.129)	0.014				
	0.819 (0.636-1.056)	0.124				
	1.219 (0.996-1.493)	0.054				
	0.638 (0.174-2.339)	0.498				
0						

Results (cont.)

Table 3. Primary Endpoint

	Piperacillin- Tazobactam	Cefepime or Carbapenem	
Primary Outcome, n (%)	(n=35)	(n=46)	p-value
Clinical or microbiological failure	17 (48.6)	17 (37.0)	0.294
In-hospital 30-day mortality	2 (5.7)	3 (6.5)	0.881
WBC >12 x 10 ⁹ /L (days 5-7)	8 (22.9)	10 (21.7)	0.905
T _{max} <u>></u> 38°C (days 5-7)	6 (17.1)	10 (21.7)	0.607
Microbiological failure (days 3-5)	4 (11.4)	0 (0.0)	0.019
Microbiological relapse (days 5-30)	1 (2.9)	2 (4.4)	0.725
Abbreviations: WBC white blood cell			

Table 4. Secondary Endpoints

	Piperacillin- Tazobactam (n=35)	Cefepime or Carbapenem (n=46)	p-value
Hospital LoS (days), median (IQR)	12.4 (6.1-22.2)	13.2 (5.5-25.1)	0.260
ICU LoS (days), median (IQR)	2.4 (1.0-3.3)	10.1 (2.8-14.6)	0.855
Clostridioides difficile infection, n (%)	0 (0.0)	2 (4.4)	0.212

Abbreviations: ICU, intensive care unit; LoS, length of stay

Discussion/Conclusion

- Treatment with cefepime/carbapenems was associated with a lower odds of clinical and microbiological failure versus piperacillin/ tazobactam in immunocompromised patients with infections due to organisms with inducible AmpC (OR = 0.303 [95% CI 0.093-0.991])
- Piperacillin/tazobactam was associated with more frequent microbiological failure compared to cefepime or carbapenems
- No difference was observed in the secondary outcomes
- Despite higher Pitt bacteremia scores and rates of severe neutropenia, patients treated with cefepime and carbapenems did not have worse outcomes compared to piperacillin/tazobactam
- This was a single center, retrospective study and further, larger prospective trials are needed

Disclosures

• All authors have no potential conflicts of interest or disclosures

References

- Tamma PD, et al. *Clin Infect Dis.* 2019; 69:1447-1455.
- Tamma PD, et al. *Clin Infect Dis.* 2022; 74(12):2089-2114.
- Moy S, et al. *Clin Ther*. 2017; 39:170-176.
- 4. Stewart A, et al. Open Forum Infect Dis. 2021; 8(8):1-12.

