Regional distribution of *Escherichia coli* antibiotic resistance among outpatients in Washington state, 2013-2019

Hannah Fenelon¹, Stephen E. Hawes¹, Hema Kapoor², Ann Salm², Jeff Radcliff², Peter Rabinowitz¹ ¹University of Washington, Seattle, WA; ²Quest Diagnostics, Secaucus, NJ

Introduction

- *E. coli* is one of the most common bacterial infections in the United States and costs an estimated \$5 billion in direct and indirect costs annually¹.
- Antibiotic resistance in *E. coli* is increasing and UTIs caused by antibiotic resistant *E. coli* cause significant disease burden.
- Potential drivers of resistance include clinical prescribing practices and use of antibiotics in agriculture.
- Geographic variation in resistance of *E. coli* in the outpatient setting is poorly understood.

Methods

Data

- Quest Diagnostics outpatient urinary *E. coli* isolates from Washington state from 2013-2019.
- The first isolate from each unique individual was included in the analysis and a complete case analysis for each antibiotic was done.

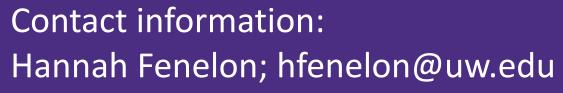
Methods

- Exposure: nine Public Health Emergency Preparedness Regions (PHEPRs) of Washington state (Figure 1).
 - Central region was selected as the reference group because it had the most isolates and contains Seattle.
- Outcome: antibiotic susceptibility, as determined by the Clinical and Laboratory Standards Institute (CLSI)², was binarized to susceptible (susceptible) or non-susceptible (resistant or intermediate) for 5 antibiotics:
 - ampicillin (AMP)
 - ciprofloxacin (CIP)
 - ceftriaxone (CRO)*
 - gentamicin (GEN)
 - trimethoprim / sulfamethaxazole (SXT)
- Logistic regression with robust standard errors was performed with the PHEPRs and adjusted for year of collection, sex at birth, and age group to get prevalence odds ratios (PORs).

Sex

• *CLSI CRO breakpoints changed

Figure 1: Map of Washington state with the nine PHEPRs outlined



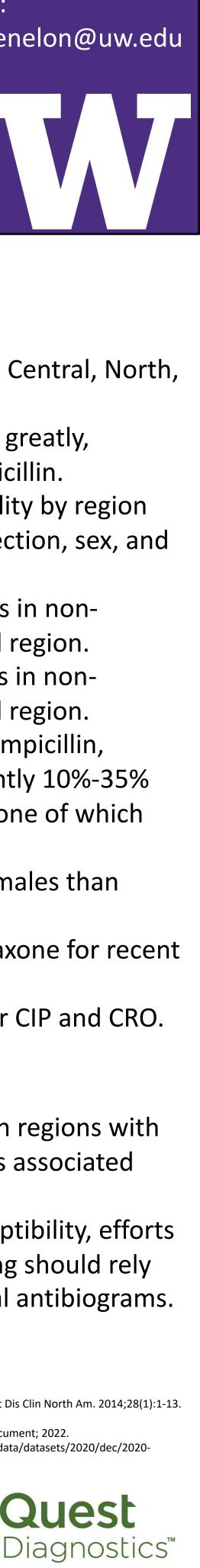

Figure 1: map of Washington with the PHEPRs outlined and the population density by census populated areas^{3,4}.

Table 1: Regression results for antibiotic non-susceptibility of five antibiotics

ntibiotic		Ampicillin (n=40,042)	Ciprofloxacin (n=40,214)	Ceftriaxone (n=40,017)	Gentamicin (n=40,217)	Trim sulfa (n=4
rude non-susceptibility proport	tion	0.37	0.10	0.03	0.05	
n (%)			Prevalence Odds Ratio (95% Confidence Interval)			
HEPR						
Central	8097 (20.1)	Ref.	Ref.	Ref.	Ref.	
East	2783 (6.9)	0.89 (0.81-0.98)	0.73 (0.62-0.85)	0.46 (0.35-0.60)	0.71 (0.57-0.88)	0.67
North	7451 (18.5)	0.82 (0.76-0.88)	0.81 (0.72-0.90)	0.61 (0.51-0.72)	0.83 (0.72-0.97)	0.76
North Central	474 (1.2)	0.78 (0.64-0.95)	0.64 (0.46-0.90)	0.20 (0.06-0.63)	0.86 (0.56-0.1.31)	0.76
Northwest	1300 (3.2)	0.79 (0.70-0.90)	0.70 (0.57-0.86)	0.42 (0.26-0.65)	0.70 (0.53-0.93)	0.57
Pierce	5962 (14.8)	0.84 (0.78-0.90)	0.78 (0.70-0.87)	0.65 (0.53-0.78)	0.69 (0.59-0.81)	0.70
South Central	1189 (3.0)	0.88 (0.77-1.00)⊥	0.80 (0.65-0.99)	0.78 (0.57-1.08)	0.98 (0.75-1.28)	0.84
Southwest	7857 (19.5)	0.79 (0.74-0.84)	0.67 (0.60-0.75)	0.57 (0.48-0.68)	0.66 (0.57-0.77)	0.66
West	5104 (12.7)	0.84 (0.78-0.91)	0.73 (0.65-0.82)	0.61 (0.49-0.75)	0.75 (0.64-0.89)	0.70
ear of collection						
2013	4271 (10.6)	Ref.	Ref.	Ref.	Ref.	
2014	3499 (8.7)	1.02 (0.93-1.12)	0.93 (0.80-1.08)	1.11 (0.63-1.94)	1.19 (0.96-1.47)	1.00
2015	4086 (10.2)	1.17 (1.06-1.28)	1.12 (0.97-1.29)	5.37 (3.52-8.18)	1.20 (0.98-1.48)	1.04
2016	4313 (10.7)	1.15 (1.05-1.26)	1.07 (0.93-1.24)	6.48 (4.28-9.80)	1.18 (0.97-1.43)	1.08
2017	7656 (19.0)	1.14 (1.05-1.24)	1.08 (0.95-1.23)	6.60 (4.40-9.89)	1.13 (0.94-1.37)	1.02
2018	7563 (18.8)	1.12 (1.03-1.21)	1.03 (0.90-1.17)	7.20 (4.81-10.78)	1.18 (0.98-1.43)	1.05
2019	8829 (22.0)	1.15 (1.06-1.25)	1.01 (0.89-1.15)	7.36 (4.93-10.97)	1.18 (0.98-1.42)	1.09
ex						
Female	37628 (93.6)	Ref.	Ref.	Ref.	Ref.	
Male	2589 (6.4)	0.92 (0.87-0.97)	1.39 (1.24-1.56)	1.73 (1.44-2.08)	1.29 (1.09-1.52)	1.06
ge Group (years)						
19-50	18326 (44.8)	Ref.	Ref.	Ref.	Ref.	
0-18	3781 (9.3)	0.96 (0.89-1.04)	0.62 (0.53-0.72)	0.74 (0.57-0.94)	0.85 (0.71-1.02)	0.94
>50	18110 (44.3)	0.93 (0.89-0.97)	1.59 (1.49-1.71)	1.47 (1.31-1.66)	1.15 (1.04-1.26)	0.91

L This confidence interval does not include 1.00 but due to rounding 1.00 is the upper limit for the table. Bold indicates the POR is not significant at the alpha = 0.05 level.

Results

- The analysis included 40,217 isolates.
- More than 50% of isolates were from three regions: Central, North, and Pierce.
- Overall, non-susceptibility for each antibiotic varied greatly, ranging from 3.2% for ceftriaxone to 37.0% for ampicillin.
- There were significant differences in non-susceptibility by region for all antibiotics, controlling for year of isolate collection, sex, and age.

Ref. 00 (0.91-1.11) 04 (0.95-1.14) 08 (0.99-1.19) 02 (0.94-1.11) 05 (0.96-1.14) 09 (1.01-1.19)

Ref.)6 (0.95-1.17)

Ref. 94 (0.85-1.03) 91 (0.87-0.97)

- Ceftriaxone saw the largest differences in nonsusceptibility compared to the Central region.
- Ampicillin saw the smallest differences in nonsusceptibility compared to the Central region.
- Adjusted PORs for antibiotic non-susceptibility for ampicillin, ciprofloxacin and trimethoprim-sulfa were consistently 10%-35% lower odds compared to the Central region, all but one of which are significantly different.
- Adjusted POR for non-susceptibility was higher for males than females for AMP, CIP, CRO, and GEN.
- Higher adjusted POR of non-susceptibility for ceftriaxone for recent years (2015-2019) compared to 2013.
- There was increasing non-susceptibility with age for CIP and CRO.

Conclusions

- The highest rates of non-susceptibility were found in regions with more urban areas, suggesting a link between factors associated with urbanization and non-susceptibility.
- Due to significant geographic variation in non-susceptibility, efforts in antimicrobial stewardship in the outpatient setting should rely on local resistance patterns, using tools such as local antibiograms.

References

- Foxman B. Urinary Tract Infection Syndromes: Occurrence, Recurrence, Bacteriology, Risk Factors, and Disease Burden. Infect Dis Clin North Am. 2014;28(1):1-13
- 2. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. CLSI Document; 2022 U.S. Census Bureau. (2020) Decennial Census of Population and Housing Datasets. Retrieved from https://www.census.gov/data/datasets/2020/dec/2020
- census-redistricting-summary-file-dataset.htm 4. Redlands, C. E. S. R. I. (2011). ArcGIS Desktop: Release 10.

