Cidofovir Prescribing Patterns and Outcomes in Hospitalized Adults and Children

Introduction

- Cidofovir (CDV) is an antiviral agent used for the treatment of infections caused by DNA viruses commonly seen in immunocompromised patients¹
- Recommended dosing regimens used in practice are off-label, based on limited clinical evidence, and vary by indication with 5 mg/kg every 1-2 weeks and 1 mg/kg 3 times weekly being the most commonly cited regimens¹⁻⁵
- Cidofovir-induced nephrotoxicity is a significant concern
 - Routine lab monitoring, renal dose adjustments, and co-administration with intravenous (IV) fluids and probenecid are recommended to limit CDV-induced nephrotoxicity but lack a standard approach¹

Objectives

- **Primary**: Describe CDV prescribing patterns in adult and pediatric patients
- Secondary: Evaluate rates of nephrotoxicity, virologic response, and IV fluid and probenecid use

Methods

Study Design

• Retrospective, multicenter medication use evaluation

Inclusion Criteria

- Admission to Atrium Health's Carolinas Medical Center or Levine Children's Hospital in Charlotte, NC
- Receipt of at least one dose of IV CDV during an admission from August 2014 through June 2021

Clinical Outcome Analysis

- **Exclusion**: prior CDV use or receipt of non-IV CDV during same admission
- **Nephrotoxicity**: acute kidney injury (AKI) defined by an increase in serum creatinine to 150% baseline or an increase of 0.3 mg/dL in 48 hours
- Full virologic response: minimum of 1 log reduction in associated viral load within 2 weeks of treatment initiation
- **Partial virologic response**: decrease in viral load < 1 log reduction within 2 weeks of treatment initiation

Results

• A total of 38 adult patients and 26 pediatric patients received 44 and 60 CDV doses respectively

Abbreviations

AKI	Acute kidney injury	CDV	Cidofovir	IBW	Ideal body weight
AdjBW	Adjusted body weight	СМУ	Cytomegalovirus	JC virus	John Cunningham virus
ADV	Adenovirus	GU	Genitourinary	SOT	Solid organ transplant
BKV-AN	BK virus-associated nephropathy	HHV-6	Human herpesvirus 6	TBW	Total body weight
BKV-HC	BK virus hemorrhagic cystitis	нѕст	Haemopoietic stem cell transplant		

Female sex, n Age in years, n BMI in kg/m^2 , Serum creatini Creatinine clea **Estimated GFR** New start cido Serum creati Creatinine cl Renal replac ANC in cells/m Immunosuppr Solid organ t Stem cell tra Other Primary treatr BK virus Adenovirus Cytomegalo Other DNA v Additional ind More than one

Table 2. Supportive Care

Order set used IV fluid bolus Normal sali IV fluid bolus Normal salir Three doses o Dose > 1 mg/l ^a Sample without pr

Figure Se
0.5 n 0.5 mg/kg every o
B 0.5 mg/kg every
0.5 mg
1 mg
C
1 m _i
1 mg/kg 3 ti
3 mg/kg every
3 mį
5
5 mg/kg every
5 mį

^a SOT n = 4, HSCT n = 1, other n = 1

Amanda Lefemine^{1,2}, PharmD; Jacqueline Meredith, PharmD, BCIDP³; Rupal Patel, PharmD, BCPPS²; Chris Fotiadis, MD¹; Zainab Shahid, MD¹; Kiran Gajurel, MD¹; Danya Roshdy, PharmD, BCPS, BCIDP¹ ¹Atrium Health's Carolinas Medical Center, Charlotte, NC; ²Levine Children's Hospital, Charlotte, NC; ³Clinical Care Options, Reston, VA

Table 1. Baseline Characteristics

Baseline Characteristic	Adults	Pediatrics		
	(n = 38)	(n = 26)		
(%)	6 (15.8)	9 (34.6)		
median (range)	49 (21-76)	7 (0-27)		
, median (range)	27.8 (17.9-42.2)	17.8 (9.8-26.9)		
nine in mg/dL, median (range)	1.5 (0.7-8.7)	0.33 (0.1-2.08)		
arance in mL/min, median (range) ^a	58.5 (9-143)	128.5 (42-199)		
R in mL/min/1.73m ² , median (range) ^b	-	158.5 (45-256)		
ofovir, n (%)	26 (68.4)	21 (80.8)		
tinine > 1.5 mg/dL, n (%)	12 (46.1)	2 (9.5)		
clearance \leq 55 mL/min, n (%)	10 (38.5)	1 (4.8)		
cement therapy, n (%)	3 (11.5)	1 (4.8)		
mm ³ , median (range)	3875 (0-26660)	1375 (0-10200)		
ression, n (%)				
transplant recipient	22 (57.9)	2 (7.7)		
ansplant recipient	14 (36.8)	21 (80.8)		
	2 (5.3)	3 (11.5)		
ment indication, n (%)				
	29 (76.3)	11 (42.3)		
	6 (15.8)	11 (42.3)		
ovirus	1 (2.6)	2 (7.7)		
virus	2 (5.3)	2 (7.7)		
dication for CDV, n (%)	6 (15.8)	10 (38.5)		
e admission with cidofovir, n (%)	5 (13.2)	15 (57.7)		
ndov, CEP - glomorular filtration rate, ANC - absolute nout	han hil an untu DNIA — dan uu wilan	سيمامم الممام ممام		

BMI = body mass index; GFR = glomerular filtration rate; ANC = absolute neutrophil count; DNA = deoxyribonucleotide acid ^a CrCl was calculated using the Cockcroft-Gault equation; 6 patients in the pediatric group used this calculation due to age > 18 yr ^bCalculated using the Schwartz equation; 20 patients in the pediatric group used this calculation

Characteristic, n (%)	Adults (n = 44)	Pediatrics (n = 60)	
ed	13 (32.5)	37 (61.7)	
given in 2 hours prior to dose	20 (45.5)	49 (81.7)	
ine	13 (65.0)	49 (100)	
given in 2 hours after dose	13 (29.5)	42 (70.0)	
ine	8 (61.5)	42 (100)	
of probenecid doses administered	14 (31.8)	16 (26.7)	
kg without probenecid given ^a	5 (16.7)	0 (0)	
probenecid n = 30 for adults and n = 44 for pediatrics			

Discussion

Adults

• Dosing in adults was highly variable, but the most common regimens included:

- 0.5 mg/kg weekly for BKV-AN
- 0.5 mg/kg every other week for BK viremia
- 1 mg/kg weekly for BKV-HC
- 1 mg/kg three times weekly for ADV infection

• About one fifth of obese patients received cidofovir dosed by adjusted body weight • Less than half of all adults received fluid boluses with cidofovir and about 65% of the boluses were normal saline

• Probenecid use was inconsistent and 17% of the patients that did not receive probenecid received a CDV dose greater than 1 mg/kg

• The rate of nephrotoxicity was 29% and was more common with higher doses

• All but one patient evaluated had a decrease in viral load during the first two weeks

Pediatrics

- The most common dose used for pediatric patients was 1 mg/kg three times weekly, used in 67% of patients across all indications
- Over 75% received fluid boluses with CDV and all were normal saline
- All patients with a CDV dose greater than 1 mg/kg received probenecid
- The rate of nephrotoxicity was 14% and all received multiple additional nephrotoxins
- Three evaluated patients had an increase in viral load but no similarities in dosing or indication were noted

Limitations

೧	Retrospective design
A	

Limited to inpatient use

7-year evaluation period

Small sample size and groups

Conclusions

- High variability in CDV prescribing patterns highlights the need for standardized, indication-specific dosing
- Standardization of IV fluid and probenecid use along with guidance on cidofovir dose adjustments may help decrease the risk of CDV-associated nephrotoxicity
- Evaluation of virologic response was limited by small sample size and further
- assessment is needed

References

- 1. Vistide (cidofovir) [package insert]. Gilead Sciences, Inc. Forest City, CA, 2000.
- 2. Cesaro S et al. J Antimicrob Chemother. 2018;73(1):12-2.
- 3. Hirsch HH et al. Clin Transplant. 2019;33(9):e13528. 4. Florescu DF et al. Clin Transplant. 2019;33(9):e13527.
- 5. Neofytos D et al. Biol Blood Marrow Transplant. 2007;13(1):74-81.
- 6. Caruso Brown AE et al. Antimicrob Agents Chemother. 2015;59(7):3718-3725.

Contact Information

Amanda Lefemine, PharmD Amanda.Lefemine@atriumhealth.org

Disclosures

Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that indirect interest in the subject matter of this presentation

