Clinical Profile and Antimicrobial Susceptibility of Invasive Extraintestinal Pathogenic Escherichia coli **Disease in Hospitalized** Adults Aged ≥60 Years: **EXPECT-2 Study**

KEY FINDINGS STATEMENTS

- The EXPECT-2 study prospectively enrolled hospitalized adults aged ≥ 60 years to characterize clinical profile of invasive extraintestinal pathogenic Escherichia coli disease also known as invasive E. coli disease (IED) and associated antimicrobial resistance (AMR) patterns
- Bacteremic IED was reported in 80.4% and nonbacteremic IED in 19.6% of patients (N=240)
- Sepsis was diagnosed in 72.1% and septic shock in 10.0% of patients
- By day 28 of IED diagnosis, 32.5% of patients were encountered in the emergency department (ED) and 11.8% in the intensive care unit (ICU); the in-hospital mortality rate was 4.6%
- 98.2% of *E. coli*-positive isolates were cultured from blood and/or urine
- Multidrug resistance (MDR) was detected in 34.8% of isolates. The observed AMR rates were 30.4% for trimethoprim–sulfamethoxazole, 22.1–24.1% for fluoroquinolones, and 4.3–16.4% for extended-spectrum cephalosporins

CONCLUSIONS

- Combining systemic inflammatory response syndrome (SIRS) or Sequential Organ Failure Assessment (SOFA) criteria with $\geq 1 E$. coli isolate cultured from blood, urine, or an otherwise sterile body site can optimize diagnosis of IED
- More than one-third of *E. coli* isolates displayed MDR and more than two-thirds of IED patients developed sepsis
- The data warrant a need of effective immunization strategies to prevent severe forms of IED in older population

Acknowledgments

Services, LLC

The University Medical Center Utrecht (UMCU; Netherlands) sponsored the study Janssen Research & Development was the European Federation of Pharmaceutical Industries and Associations (EFPIA) partner. This research project received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° 115523 resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution. The research leading to these results was conducted as part of the COMBACTE consortium. For further information please refer to www.COMBACTE.com, Medical writing support was provided by Eloquent Scientific Solutions, and was funded by Janssen Global

Disclosures

JD, JG, OG, MS, BS, and JP are employees of Janssen, and may hold stock in Johnson & Johnson. **MB** discloses being an advisor/consultant for AstraZeneca, Janssen Pharmaceuticals, Janssen Vaccines, Merck, and Novartis. JR-B, TV, CV, HG, and **ME** have no conflicts of interest or relevant disclosures.

Joachim Doua¹, Jesús Rodríguez-Baño², Jeroen Geurtsen³, Oscar Go⁴, Michal Sarnecki⁵, Tuba Vilken⁶, Bart Spiessens¹, Christine Vallejo⁷, Herman Goossens⁶, Marc Bonten⁸, Jan Poolman³, Miquel Ekkelenkamp⁹ ¹Janssen Research & Development, Infectious Diseases & Vaccines, Janssen Pharmaceutica, Beerse, Belgium; ²University of Sevilla, Netherlan Virgen Macarena and Biomedicine, Institute of Sevilla, Seville, Spain; ³Bacterial Vaccines Discovery and Early Development, Janssen Vaccines & Prevention B.V., Leiden, Netherlan ⁴Janssen Research & Development, Raritan, NJ, USA; ⁵Janssen Vaccines, Branch of Cilag GmbH International, Bern, Switzerland; ⁶Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium; ⁷Emergency Department and Inserm Clinical Investigation Center 1435, Dupuytren University Hospital, Limoges, France; ⁸Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands; ⁹Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands

INTRODUCTION

- Extraintestinal pathogenic *Escherichia coli* (ExPEC) can infect normally sterile body sites outside the gastrointestinal tract and cause a range of invasive diseases, including bloodstream infections, sepsis, and urosepsis^{1,2}
- Invasive ExPEC disease, also known as invasive *E. coli* disease (IED), is defined as an acute illness consistent with systemic bacterial infection microbiologically confirmed by a positive *E. coli* culture from a normally sterile body site (including blood) or urine in patients with urosepsis and no other identifiable source of infection²
- The incidence of IED is increasing over time,³⁻⁶ likely influenced by the widespread and increasing incidence of antimicrobial resistance (AMR) of pathogenic *E. coli* strains⁶
- E. coli resistance to antibiotics is common,⁷ including those used for treating IED, such as extended-spectrum cephalosporins and fluoroquinolones⁸

OBJECTIVES

• The EXPECT-2 study (NCT04117113) characterized the clinical profile of IED and AMR patterns of causative *E. coli* isolates in hospitalized adults aged \geq 60 years

METHODS

- EXPECT-2 was a prospective, multinational, observational study conducted in 8 hospitals in Japan (2 sites), United States, Canada, France, Germany, Italy, and Spain
- The study was conducted between October 22, 2019 and January 28, 2021
- Eligible patients were aged ≥60 years, hospitalized, and diagnosed with IED either as a cause for admission or developed during hospitalization
- IED was defined by the presence of clinical criteria of an invasive bacterial infection* and the isolation of *E. coli* from blood or an otherwise normally sterile body site, and/or the isolation of *E. coli* from urine with no other identifiable source of infection
- Endpoint data (Figure 1) were collected on day 1 of IED diagnosis and at follow-up (day 28 or discharge, ie, whichever came first)
- *E. coli* isolates were identified in the study sites and confirmed by the central laboratory
- Antimicrobial susceptibility testing was performed according to the broth microdilution assay per CLSI guidelines. Data were reported according to CLSI and EUCAST-established breakpoints

*The qSOFA score of ≥2, or an acute change in total SOFA score of ≥2 points from baseline consequent to the infection, or fulfilling ≥ 2 criteria of SIRS.

CLSI, Clinical and Laboratory Standards Institute; EUCAST, European Committee on Antimicrobial Susceptibility Testing; SIRS, systemic inflammatory response syndrome; SOFA, Sequential Organ Failure Assessment; qSOFA, quick SOFA.

FIGURE 1: Study endpoints and associated endpoint measurements

Endpoint	Endpoint measurement
Proportion of bacteremic and nonbacteremic IED cases	Bacteremic IED was determined by isolation of <i>E. coli</i> from blood. Nonbacteremic IED was determined by isolation of <i>E. coli</i> from urine or an otherwise sterile body site
Proportion of IED by acquisition setting and source of infection	Community-acquired: Infection present without prior 3-month exposure in a hospital, doctor's office, clinic, home-care treatment Hospital-acquired: Infection during or after hospitalization that was not present or incubating >48 hours following admission Healthcare-associated: Infection present at hospital admission/ within 48 hours of admission in patients fulfilling additional criteria Infection source: Infectious focus within 30 days of IED
Clinical profile of IED	% of patients fulfilling clinical criteria of SIRS, SOFA, and qSOFA; % of patients presenting with sepsis and septic shock; % of patients with IED complications; outcome of IED by day 28 or at discharge
Medical resource utilization	% of IED patients with medical encounters in 28 days following IED diagnosis
Antimicrobial resistance of <i>E. coli</i> isolates	Antibiotics of interest were those deemed clinically relevant for treating IED ⁷ : Extended-spectrum cephalosporins (cefepime, ceftazidime, ceftriaxone), fluoroquinolones (ciprofloxacin, levofloxacin), and trimethoprim–sulfamethoxazole Multidrug resistance (MDR) was defined as acquired nonsusceptibility to ≥1 agent in ≥3 antimicrobial categories

RESULTS

Population

were white (**Table 1**)

TABLE 1: Baseline characteristics of patients with IED, FAS

	All potiente
	All patients
Age at time of diagnosis, y, (n)	240
Mean (SD)	75.4 (8.58)
Median	75.0
Range (min, max)	(60, 97)
60-74	48.8%
75-84	32.9%
≥85	18.3%
Sex, (n)	240
Female	50.8%
Race, (n)	167
White	76.6%
African	4.2%
Asian	18.0%
Hispanic or Latino	0.6%
Indian	0.6%
History of UTI (previous 10 years), (n)	231
No UTI	64.1%
<2 years prior to enrollment	23.8%
≥2 years prior to enrollment	12.1%
History of IED (previous 10 years), (n)	222
No IED	84.7%
With IED	15.3%
Medication use (3 months prior to IED), (n)	240
Antibiotics	37.5%
Immunosuppressive therapy	24.2%

Immunosuppressive therapy UTI, urinary tract infection.

IED characterization

- acquired in 20.0% of patients
- The most common source of infection was the urinary tract (62.9%)

Clinical profile of IED

- Table 2 summarizes the clinical profile of patients with IED
- patients, respectively
- range, 2–10)
- The most common complication was kidney dysfunction (12.9%)

4. Bou-Antoun S, et al. Euro Surveill 2016; 21:30329

Vihta KD. et al. Lancet Infect Dis 2018: 18:1138-49.

Buetti N, et al. BMJ Open 2017; 7:e013665.

Poirel L, et al. Microbiol Spectr 2018; 6(4)

TABLE 2: Clinical profile of patients with IED, FAS

	All patients
FAS	240
Any general symptom of IED (malaise, fatigue, muscle pain, or	
chills)	59.2%
Any laboratory values indicating bacterial infection and/or sepsis	81.3%
Diarrhea	5.8%
SIRS evaluated	240
0 criteria	9.2%
≥1 criterion	90.8%
≥2 criteria	65.8%
≥3 criteria	30.8%
4 criteria	4.6%
SIRS criteria collected	
Tachycardia, (n)	237
Tachycardia (present)	59.1%
Tachypnea, (n)	164
Tachypnea (present)	35.4%
Abnormal temperature, (n)	233
Abnormal temperature (present)	57.5%
Leukocytosis, leukopenia, or bandemia, (n)	240
Leukocytosis, leukopenia, or bandemia (present)	53.8%
SOFA ^a	240
Score ≥2	60.4%
SOFA	240
Score 0	66.3%
Score 1	24.2%
Score 2	9.6%
Score 3	0
Sepsis ^b	72.1%
Septic shock ^b	10.0%
UTI (any signs and/or symptoms)	50.4%

References

Vila J, et al. FEMS Microbiol Rev 2016; 40:437-63. Geurtsen J, et al. FEMS Microbiol Rev Published online June 24, 2022. doi: 10.1093/femsre/fuac031.

B. Gagliotti C, et al. *Euro Surveill* 2011; 16:19819.

240 patients were enrolled (full analysis set [FAS]); 50.8% of patients were female, 76.6%

• Bacteremic IED was reported in 80.4% and nonbacteremic IED in 19.6% of patients • IED was community acquired in 50.4%, healthcare associated in 29.6%, and hospital

Sepsis and septic shock were diagnosed by the investigator in 72.1% and 10.0% of

• Complications were reported in 20.0% of cases; median duration was 4 days (interquartile

Clinical outcome

• By day 28 of IED diagnosis, 85.8% (206/240) of patients were discharged, 9.6% (23/240) were still hospitalized, and 4.6% (11/240) had died

Medical resource utilization

- 70.4% of patients had a medical encounter in 28 days following IED diagnosis
- The most common medical encounter setting was ED (32.5% [55/169])
- ICU encounters were reported in 11.8% (20/169) of patients with IED

Microbiological characterization

- The number of samples yielding *E. coli* was 334 (N=238 patients with IED)
- 62.6% samples originated from blood, 35.6% from urine, and 1.8% from other sites
- E. coli was the only detected pathogen in 82.6% of samples (276/334) and was detected alongside other pathogens in 17.4% of samples (58/334; 55 samples from bacteremic IED)
- The most common other pathogens were *Enterococcus faecium* (22.4% [13/58]) Enterococcus faecalis (12.1% [7/58]), and Klebsiella pneumoniae (10.3% [6/58])

AMR of E. coli isolates

- Resistance rates were 30.4% for trimethoprim–sulfamethoxazole, and ranged between 22.1–24.1% for fluoroquinolones, and 4.3–16.4% for extended-spectrum cephalosporins; 34.8% of isolates displayed MDR (**Table 3**)
- MDR rates were similar between isolates from bacteremic vs nonbacteremic patients

TABLE 3: Resistance levels of *E. coli* isolates collected from IED pat

	All IED ^a
FAS	238
Number of <i>E. coli</i> isolates with antimicrobial susceptibility test performed	299
Number and percentage of <i>E. coli</i> isolates resistant to a given antibiotic ^{b,c}	
Amikacin	0.7%
Ampicillin	56.2%
Ampicillin/Sulbactam	18.7%
Aztreonam	9.0%
Cefazolin	18.7%
Cefepime	5.7%
Ceftazidime	4.3%
Ceftriaxone	16.4%
Ciprofloxacin	24.1%
Colistin	1.0%
Gentamicin	11.0%
Levofloxacin	22.1%
Minocycline	6.0%
Piperacillin/Tazobactam	1.7%
Tetracycline	30.4%
Tigecycline	0.3%
Tobramycin	10.0%
Trimethoprim–Sulfamethoxazole	30.4%
<i>E. coli</i> isolates resistant to ≥1 antibiotic in ≥1 drug class	62.2%
<i>E. coli</i> isolates resistant to ≥1 antibiotic in ≥2 drug classes	45.5%
<i>E. coli</i> isolates resistant to ≥1 antibiotic in ≥3 drug classes (MDR)	34.8%
Misrobiology, data ware systemle for 220 patients due to an appidental loss of comple (n=1) and a pagative	E cali re identification regult (

^aMicrobiology data were available for 238 patients due to an accidental loss of sample (n=1) and a negative *E. coli* re-identification result (n=1). ^bDenominator is the total number of *E. coli* isolates with antimicrobial susceptibility tests performed. ^cA patient may have ≥ 1 isolate test result.

LIMITATIONS

- A selection bias in countries where informed consent (IC) was required cannot be ruled out
- The IC requirement might have biased the enrollment towards less severe cases and contributed to the mortality rate of 4.6%, which is lower to that reported in the literature⁹⁻¹¹
- · Nonrandom selection of study sites might have introduced systematic measurement errors
- Difficulties to clinically identify nonbacteremic cases coupled with nonrandom site selection might have resulted in the lower identified percentage of nonbacteremic cases
- The case definitions of UTI and IED might have not been accurately and consistently applied in the assessment of patient medical history
- The lack of data about prior hospitalizations at sites other than the participating hospitals might have contributed to the overestimation of community-acquired infections
- 8. Pitout JD. Expert Rev Anti Infect Ther 2012; 10:1165-76. 9. Bonten M et al. Clin Infect Dis 2021; 72(7).
- 10. Begier E et al. Clin Infect Dis 2021; 73(4). 11. Abernethy JK et al. Clin Microbiol Infect 2015; 21(3)

ents
ients