Epidemiology and antifungal susceptibilities of clinically significant filamentous fungi from a tertiary hospital in Singapore from 2018 – 2021

Wenjie Huang¹, Mei Gie Tan¹, Yen Ee Tan¹ ¹Department of Microbiology, Singapore General Hospital, Singapore

Background

- Filamentous fungi infections are associated with significant morbidity and mortality
- Data regarding antifungal resistance in Singapore is lacking
- We investigated the species distribution and susceptibility profiles of molds isolated from a tertiary hospital in Singapore

Methods

- Antifungal susceptibility results reported from 2018 to 2021 were retrospectively reviewed
- Unique isolates per patient were included
- Molds were identified primarily by morphology
- Molecular studies were used as an adjunct where required
- Susceptibility testing was performed via Sensititre YeastOne (ThermoFisher Scientific) and E-test (Liofilchem)

Results

- 125 isolates were analyzed (Table 1)
- The most common molds recovered were Aspergillus, Fusarium and Mucorales
 - Aspergillus and Mucorales frequently involved the respiratory tract and skin and soft tissue (SST) whereas Fusarium was isolated from SST and blood
- Amphotericin B had moderate activity against all molds (Table 2), with only 11 out of 88 isolates (12.5%) being non-wild type
- The echinocandins exhibited good activity against *Aspergillus* and other hyaline molds but not *Fusarium* and *Mucorales*
- The triazoles were most useful against Aspergillus, with posaconazole demonstrating the lowest geometric mean of 0.067
- Fusarium had high MICs when tested against the azoles
- Posaconazole was the azole of choice for *Mucorales*
- Six Aspergillus isolates (all A. fumigatus) were non-wild type when tested against voriconazole, with a MIC >1
- Of these six isolates, three were also non-wild type for amphotericin B, with a MIC >2
- One Aspergillus fumigatus complex isolate demonstrated resistance across all tested azoles and sequencing revealed Cyp51 mutations

Conclusions

- Aspergillus species is the most prevalent clinically significant mold in our hospital
- Although triazoles and echinocandins exhibit good activity, 13.33% of Aspergillus isolates were nonwild type for amphotericin B
- Given the detection of these non-wild type *Aspergillus* species, susceptibility testing may be indicated in seriously ill patients to aid clinicians in selecting antifungal therapy

References

- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi 2nd ed. CLSI guideline M61. Wayne, PA: CLSI, 2021.
- Berkow EL, Lockhart SR, Ostrosky-Zeichner L. Antifungal Susceptibility Testing: Current Approaches. Clin Microbiol Rev. 2020 Apr 29;33(3):e00069-19.

Group	Number (%) of isolates								
	Respiratory	SST	Blood	Ear	Eye	Other ^f	Total		
Aspergillus spp. ^a	62 (49.6)	12 (9.6)	0 (0)	5 (4.0)	1 (0.8)	2 (1.6)	82		
Fusarium spp. ^b	2 (1.6)	13 (10.4)	8 (6.4)	0 (0)	2 (1.6)	1 (0.8)	26		
Mucorales isolates ^c	4 (3.2)	4 (3.2)	0 (0)	0 (0)	0 (0)	2 (1.6)	10		
Scedosporium and Lomentospora spp. ^d	2 (1.6)	1 (0.8)	0 (0)	1 (0.8)	0 (0)	0 (0)	4		
Other hyaline molds ^e	3 (2.4)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	3		
Total	73 (58.4)	30 (24.0)	8 (6.4)	6 (4.8)	3 (2.4)	5 (4)	125		

Table 1: Distribution of clinically significant molds by specimen site

^a A. fumigatus (38), A. flavus (17), A. niger (17), Aspergillus spp. (4), A. terreus (2), A. nidulans (2), A. sydowii (1), A. versicolor (1)

^b F. solani complex (7), F. oxysporum complex (1), Fusarium spp. (18)

^c R. microsporus (2), R. pusillus (1), R. oryzae (1), Rhizopus spp. (1), M. irregularis (1), Mucor spp. (1), L. hyalospora (1), L. corymbifera (1), Lichtheimia spp. (1)

^d S. apiospermum complex (2), Scedosporium spp. (1), L. prolificans (1)

^e Penicillium spp. (2), Tritirachium oryzae (1)

^f Includes three isolates from bone and two isolates from peritoneal fluid

Group	Descriptor	AMB	AND	MIF	CAS	FC	POS	VOR	ITC	FLU	ISA
Aspergillus spp.	Ν	82								29	
	MIC range	0.5/8	≤0.015/0.12	≤0.008/0.12	≤0.008/2	1/≥64	≤0.008/1	0.03/>8	≤0.015/>16	16/>256	0.023/≥32
	MIC 50/90	2/4	≤0.015/0.03	0.015/0.057	0.015/0.03	32/64	0.06/0.12	0.5/2	0.12/0.25	192/256	0.19/0.38
	GeoM	2.19	0.018	0.016	0.017	22.06	0.067	0.67	0.12	155.47	0.19
Fusarium spp.	Ν	26								10	
	MIC range	2/4	2/>8	0.5/>8	0.06/>8	32/>64	0.25/>8	0.5/>8	16/>16	4/>256	0.064/>32
	MIC 50/90	4/4	>8/>8	>8/>8	>8/>8	>64/>64	>8/>8	8/>8	>16/>16	>256/>256	32/>32
	GeoM	3.06	7.19	5.66	6.28	62.32	7	6.64	16	162.71	4.06
Mucorales	Ν	10								7	
isolates ^c	MIC range	1/4	4/>8	8/>8	8/>8	64/>64	0.12/>8	8/>8	0.12/>16	128/>256	0.25/>32
	MIC 50/90	1.5/4	>8/>8	>8/>8	>8/>8	>64/>64	0.75/>8	>8/>8	>16/>16	>256/>256	2/>32
	GeoM	1.63	7.46	8	8	64	1.3	8	4.58	238.86	3.34
Scedosporium and Lomentospora spp. ^d	Ν	4								0	
	MIC range	2/>8	0.5/8	0.06/1	0.03/8	64/>64	0.5/>8	0.5/>8	16/>16	4/>256	-
Other hyaline	Ν	3								1	
molds ^e	MIC range	2/>8	<=0.015/>8	0.03/>8	<=0.008/>8	2/>64	0.25/1	0.5/>8	0.06/>16	1/>256	2/2

Table 2: Susceptibility of mold isolates to antifungal agents

AMB, amphotericin B; AND, anidulafungin; MIF, micafungin; CAS, caspofungin; FC, flucytosine; POS, posaconazole; VOR, voriconazole; ITC, itraconazole; FLU, fluconazole; ISA, isavuconazole.

N, number of isolates tested against the antifungal. **MIC**_{50/90}, minimum inhibitory concentration for 50% and 90% of isolates, respectively. Denotes minimum effective concentrations (MECs) for the echinocandins. **GeoM**, geometric mean. Values are reported in mcg/ml. MIC_{50/90} and GeoM were not calculated for *Scedosporium*, *Lomentospora* and other hyaline molds due to the low number of isolates.