WVUMedicine

Background

- Recommendations for empiric therapy with an echinocandin for invasive candidiasis (IC) based upon risk factors do not exist^{1,2}
- Current treatment guidelines for IC largely recommend an echinocandin as initial therapy^{1,2}
- Echinocandins have demonstrated non-inferiority to other antifungals for the treatment of IC with low toxicity, few drug-drug interactions, and activity against azole-resistant *Candida* species³
- Bedside-scoring tools are useful in guiding clinical decision-making⁴
- Guidelines recommend risk prediction instruments (e.g., Candida Score) to facilitate earlier recognition and initiation of antifungals²
- Application of these apparatuses are limited due to poor positive predictive value, lack of validation, and absence of use in certain patient populations⁵

Objectives

Primary

Develop a risk score to predict probability of IC and guide empiric antifungal treatment in hospitalized, adult patients

Secondary

- Identify risk factor(s) present in patients treated with empiric echinocandin therapy for proven or suspected IC
- Internally validate an IC prediction score using a multivariable logistic regression model

Methods

Study Design

- Retrospective, multi-center, case-control study
- Study protocol was deemed exempt by the West Virginia University Institutional Review Board

Setting and Population

- Patients \geq 18 years that received \geq 1 dose of an echinocandin (i.e., micafungin) for proven or suspected IC between July 1, 2020 and June 30, 2021 were included
- Patients pregnant or incarcerated were excluded

Data Collection

- Randomization tool was utilized to screen patients for inclusion
- Data extracted from Epic electronic medical record (EMR) using a standardized data collection tool

Clinical risk score for prediction of invasive candidiasis to guide empiric echinocandin therapy Mary Jane Braham, PharmD¹, Wei Fang, PhD², Lauren K. Freeman, PharmD, BCIDP¹ WVU Hospitals – Department of Pharmaceutical Services, Morgantown, WV¹; WVU Health Sciences Center – West Virginia Clinical and Translational Science Institute, Morgantown, WV²

A total of 318 patients that received \geq 1 dose of micafungin during the time frame were included

Table 1. Demographic and clinical characteristics of nationts with proven or suspected TC

Characteristic	Result (N=318)	
Age (years), median [IQR]	61 [48, 70]	
Sex (male), n (%)	168 (52.8)	
Confirmed IC (Y), n (%)	110 (34.6)	
Endovascular, n/N (%)	59/110 (53.6)	
Intra-abdominal, n/N (%)	27/110 (24.5)	
Bone and joint, n/N (%)	11/110 (10)	
Skin and soft tissue, n/N (%)	11/110 (10)	
Other, n/N (%)	2/110 (1.8)	
Risk factor(s) suspected IC, median [IQR]	2 [2, 3]	
Risk factor(s) confirmed IC, median [IQR]	2 [1, 3]	
Risk factor(s) overall cohort, median [IQR]	2 [2, 3]	
Anti-anaerobic agent(s), n (%)	275 (86.5)	
Critically ill, n (%)	175 (55)	
Intravascular device(s), n (%)	112 (35.2)	
Gastrointestinal (GI) ^a , n (%)	115 (36.2)	
Renal replacement therapy (RRT), n (%)	65 (20.4)	
Parenteral nutrition, n (%)	40 (12.6)	

a – GI manipulation, necrotizing pancreatitis, anastomotic leak

Table 2: Micafungin utilization characteristics

Characteristic	Result (
Dose (mg/day), median [IQR]	100 [10
Antifungal duration (day), median [IQR]	4 [2
Infectious diseases (ID) consult (Y), n (%)	163 (
ID recommended (Y), n/N (%)	134/16

Table 3: Univariable logistic regression for IC risk factors

Risk Factor	Odds Ratio (95% Confidence In
Anti-anaerobic agent(s)	0.5 (0.2 – 0.9)
Critically ill	0.5 (0.3 – 0.8)
Intravascular device(s)	1.4 (0.8 – 2.3)
GI	1.4 (0.8 – 2.4)
RRT	0.8 (0.4 - 1.4)
Parenteral nutrition	2.1 (1 – 4.4)

Results

Figure 1. Estimated probability of IC based on IC risk prediction score (RPS)

Table 4: Internal validation IC RPS

IC RPS	Sen ^a	Spe ^b	PPV ^c	NPV ^d	
> 50	90%	30%	41%	85%	
a – sensitivity; b – specificity; c – positive predictive					

value; d – negative predictive value

Figure 2: Algorithm for application of IC **RPS in management of IC**

Results continued

- The six selected predictors had an overall significant predictive power on IC (p = 0.0017)
- Critically ill ($\chi^2 = 7.4$, p = 0.0066), anti-anaerobic agent(s) $(\chi^2 = 4.9, p = 0.0267)$, and parenteral nutrition $(\chi^2 = 4, p)$ = 0.0442) had the highest predictive values and were significantly associated with IC
- Using a cutoff score of > 50 to indicate high probability of IC provided the best performance with a sensitivity of 90% and negative predictive value of 85%
- Echinocandin utilization (days of therapy) has been reduced by 19% year-to-date

Discussion

- Implementation of the IC RPS improves empiric antimicrobial therapy and echinocandin utilization
- Effects are increased in combination with other antimicrobial stewardship interventions (e.g., prospective audit and feedback in patients on echinocandin therapy and/or with candidemia, institution specific guidelines for candidemia, dose optimization via order instructions and antimicrobial dosing guidance, clinical education)
- Strengths include the multi-center design which comprised data from patients at five hospitals within the health system
- Limitations include the retrospective design of the evaluation in determining if subjects analyzed had identified risk factors for development of IC

References

1. Pappas PG, et al. Clin Infect Dis. 2016; 62(4): 1-50. 2. Martin-Loeches I, et al. Intensive Care Med. 2019; 45(6): 789-805. 3. Wiederhold NP, et al. Infect Drug Resist. 2008; 1: 63-77. 4. Cortegiani A, et al. Crit Care. 2019; 23: 190. 5. Leon C, et al. Crit Care Med. 2009; 37: 1624-33.

Contact information Mary Jane Braham, PharmD mary.braham@wvumedicine.org (304) 288-7080

Contact information Lauren Freeman, PharmD, BCIDP lauren.freeman@wvumedicine.org (843) 532-6826