Increased Prevalence of Group A Streptococcus (GAS) high level macrolide resistance during the COVID-19 Pandemic

Ami B. Patel, Judith A. Guzman-Cottrill, Katherine E. Fleming-Dutra, Sopio Chochua, Bernard Beall, Preeti Jaggi, Jason Rippe, Christine Inguglia, Yiannis Katsogridakis, Egon A. Ozer, Stanford T. Shulman, Robert R. Tanz

Ann & Robert H. Lurie Children's Hospital of Chicago | 225 East Chicago Avenue, Chicago, IL 60611

Background/Objectives

- COVID-19 has affected the epidemiology of many respiratory pathogens including Group A Streptococcus (GAS).
- Assessing genetic heterogeneity (*emm* type, antimicrobial resistance, virulence factors) can inform treatment recommendations and targets for potential GAS vaccines.
- We assessed GAS clinical antibiotic susceptibility and performed whole genome sequencing (WGS) among pediatric pharyngeal isolates from 2020–2022.

Methods

- We created an outpatient surveillance network for GAS in Chicago, IL; Atlanta, GA; Portland, OR; and Phoenix, AZ.
- From 1/2020–3/2022 throat swabs were collected from children aged 3-18 years in pediatric clinics and EDs from:
- 1) children with acute GAS pharyngitis by rapid test and
- 2) among a convenience sample of asymptomatic children to assess for GAS colonization
- Swabs were plated on blood agar and GAS confirmed
- Clinical susceptibility to erythromycin (ERY) and ciprofloxacin (CIP) was assessed by E-test.
- *emm* type and antimicrobial resistance genes (for ERY, Clindamycin (CLI), and fluroquinolones) were assessed by WGS.

<u>Speci</u> • 11 \bigcirc

 \cap

Phen

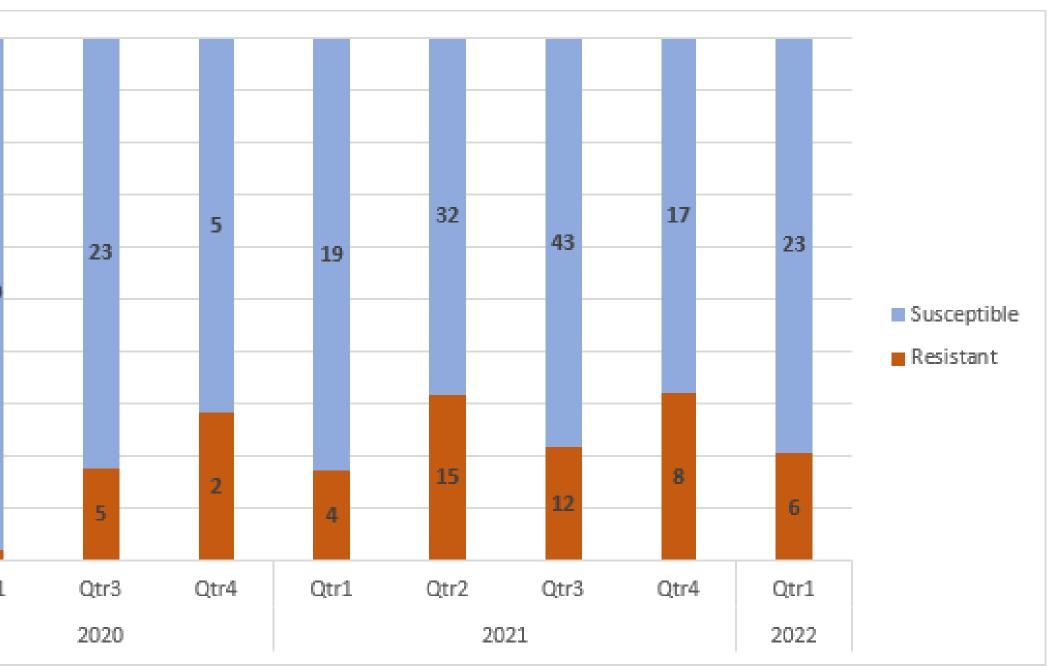
- 55 \bullet
- CIF
- The sig
- **p**<
- M

• Geno

- Of
 - Ο
 - Ο
 - Ο
- An
- CIF
- err
- CO
- (1
- The
- en

Table 1. Minimum Inhibitory Concentration (MIC) values of erythromycin (ERY) and clindamycin (CLI) resistant GAS isolates. Most resistant isolates demonstrated high MICs. 28/55 (51%) of ERY resistant isolates had MIC ≥256.

Antibiotic	# isolates	Median MIC (µg/mL)	Range	Interquartile range
Erythromycin (ERY)	55	≥256	1 to ≥256	3 to ≥256


	Results	
cimen collection:	100%	
144 pharyngeal swabs were collected:		
684 from children with pharyngitis	90%	
 359/684 (52%) yielded GAS on culture 	80%	
460 from asymptomatic children	70% —	-
 20/460 (4.3%) yielded GAS on culture 	60%	
	50% 129	9_
notypic resistance via E-test performed on 364 isolates:	40%	
5/364 (15%) tested isolates were ERY resistant and 5/364 (1.4%)		
P resistant	30% —	
ne proportion of isolates with ERY resistance increased	20%	
gnificantly from 2020 (6%) to 2021–2022 (25%) (c ² = 23.70,	10%	
<.00001) (Figure 1) .	0%	
IICs were high among ERY resistant GAS (Table 1).	Qtr	1
otypic resistance via WGS:	Fig	ju
f 304 sequenced GAS isolates:	pha	
40/304 (13%) were ERY resistant,	(M	
35/304 (11.5%) were both ERY resistant and CLI (inducible or	the	ר
constitutive) resistant	fou	Ir
4/304 (1.3%) fluoroquinolone resistant	inc	r
mong the 20 isolates from asymptomatic children no ERY, CLI, or		
P resistance occurred, and no resistance genes were identified.	Qtı	ſ2
rmB (62%) was the most common gene for ERY resistance and		
onstitutive CLI resistance, followed by ermTR (23%) and ermT		
.1%) both conferring inducible CLI resistance		
ne emm types associated with ERY and CLI resistance were	•	
<i>nm</i> 11, 9, 77, 58, and 94.	•	-
values of erythromycin (ERY)	•	ł

E Ann & Robert H. Lurie Children's Hospital of Chicago®

M Northwestern Medicine[®]

Feinberg School of Medicine

gure 1. Proportion of tested isolates from children with GAS aryngitis (N= 346) with phenotypic erythromycin resistance $||C \ge 1 \mu g/mL|$ per quarter from 2020 to 2022. An increase in proportion of isolates resistant to erythromycin by E-test was und in 2021–2022 compared to 2020. The data demonstrate an crease in phenotypic erythromycin resistance starting in Qtr3 of 20. Note: Pandemic-related research pause occurred in 2020 r2 (March 20 – June 24).

Conclusions

- ERY resistance increased from 2020–2022.
- The high rate of CLI resistance among ERY resistant GAS was associated with erm genes.
- Implications: These results are important to inform treatment recommendations for GAS pharyngitis and targets for vaccine development that can reduce antimicrobial-resistant GAS disease.