

Longitudinal SARS-COV-2 anti-spike antibody response in pregnant people with natural infection and variable vaccine uptake

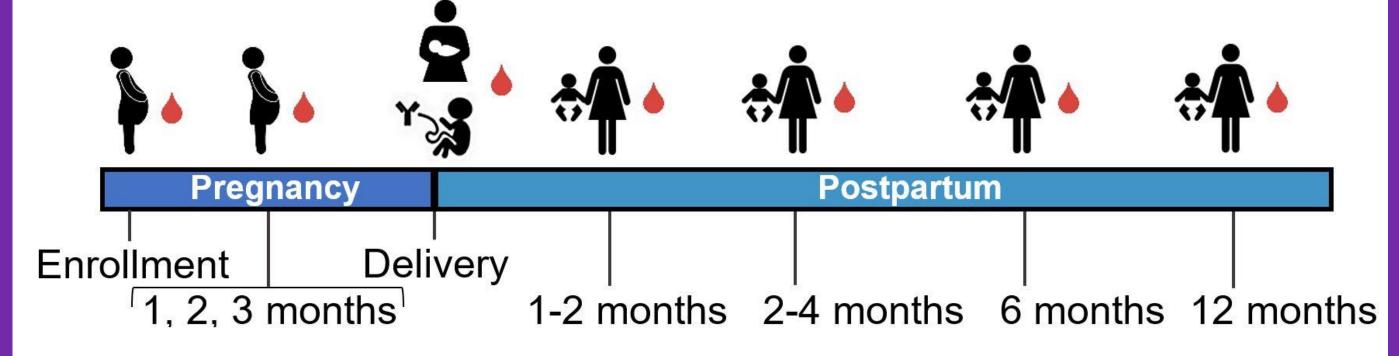
Abstract # 1255548

Sylvia M. LaCourse MD, MPH¹, Morgan C. Aurelio DNP, ARNP-CNM¹, Jaclyn N. Escudero MPH¹, Sascha R. Ellington, PhD, MSPH², Lauren B. Zapata PhD, MSPH², Margaret C. Snead PhD², Krissy Yamamoto MD¹, Carol Salerno MD¹, Alexander L. Greninger MD, PhD¹, Alisa Kachikis MD, MSc¹, Janet A. Englund MD¹, Alison L. Drake PhD, MPH¹

¹University of Washington, Seattle, WA, ²COVID-19 Response, Centers for Disease Control and Prevention, Atlanta, GA

BACKGROUND

Natural SARS-CoV-2 infection results in anti-nucleocapsid (N) and anti-spike (S) antibody (Ab) development. Anti-S Ab response (conferred by infection and/or vaccination) is more closely associated with protection.


We evaluated longitudinal anti-N and anti-S Ab responses in pregnant people with prior SAR-CoV-2 infection with variable vaccine uptake.

METHODS

Prospective cohort study of pregnant people with history of SARS-CoV-2 infection from January 2021 – September 2022 in the metropolitan Seattle area.

- Participants eligible if anti-N IgG+ by Abbott Architect chemiluminescent immunoassay (CMIA) from a pregnancy seroprevalence study, or RT-PCR+ or antigen+ from medical record
- Samples from timepoints below were tested for both anti-N and anti-S IgG Ab on Abbott Architect CMIA*
- Kaplan-Meier methods were used to measure anti-N and anti-S IgG Ab response duration

Figure 1. Timing of samples collected for SARS-CoV-2 anti-N and anti-S IgG Ab testing

RESULTS

Table 1. Baseline characteristics of participants

	n (%) or Median (IQR) N=102
Age (years)	32 (30-35)
Enrolled in pregnancy/delivery	99 (97)
Gestational age (weeks)	32 (18-40)
Enrolled postpartum	3 (3)
Postpartum time (weeks)	10 (2-13)
Prior RT-PCR+ or antigen result	92 (90)
Vaccine status**	
No vaccine	62 (61)
Partial	2 (2)
Full	24 (24)
Boosted	14 (14)

Among 102 participants on enrollment:

78 (76%) were anti-N IgG+, 96 (94%) were anti-S IgG+

75 (74%) had concordant anti-N/S IgG+ results

'Anti-N IgG+ Abbott index ≥1.4, Anti-S IgG+ ≥50 AU/mL of mRNA vaccine, full: two doses of mRNA vaccine or one dose of viral vector vaccine, boosted: three doses of mRNA vaccine (or at least one dose plus a viral vector vaccine) or two doses of viral vector vaccine

Among pregnant people with prior SARS-CoV-2 infection, duration of anti-S lgG+ response was longer than anti-N lgG+, irrespective of vaccine status. Vaccination during pregnancy was associated with higher anti-S lgG at baseline and delivery compared to those unvaccinated.

Figure 2. Longitudinal anti-N and anti-S IgG Ab responses among pregnant people with prior SARS-CoV-2 infection

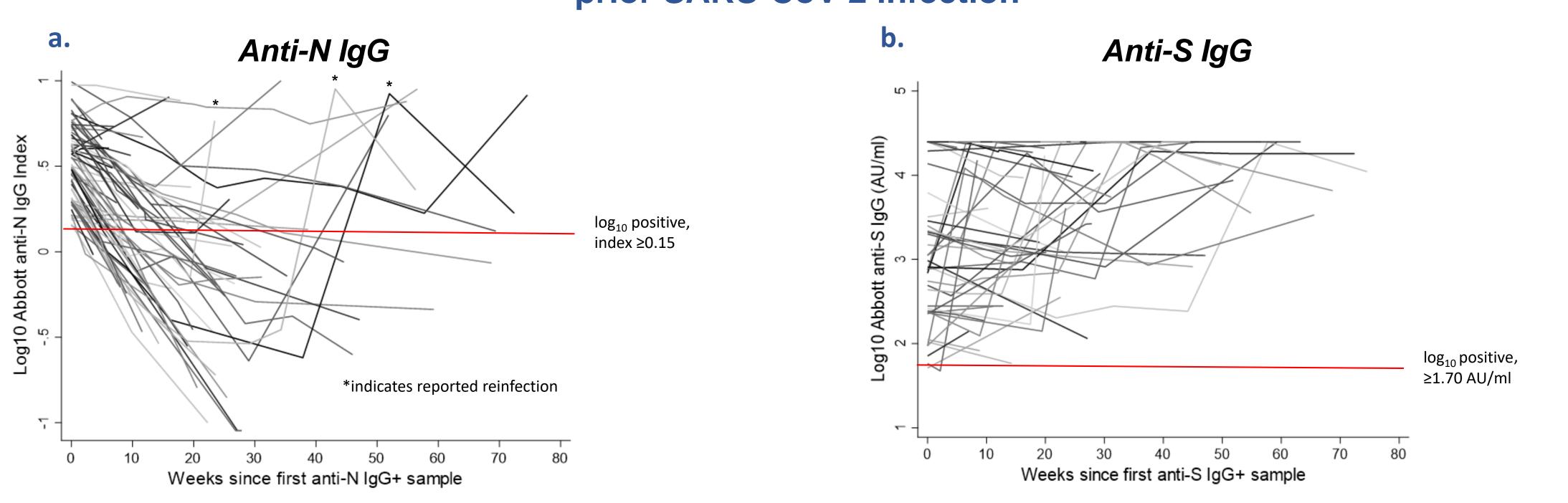
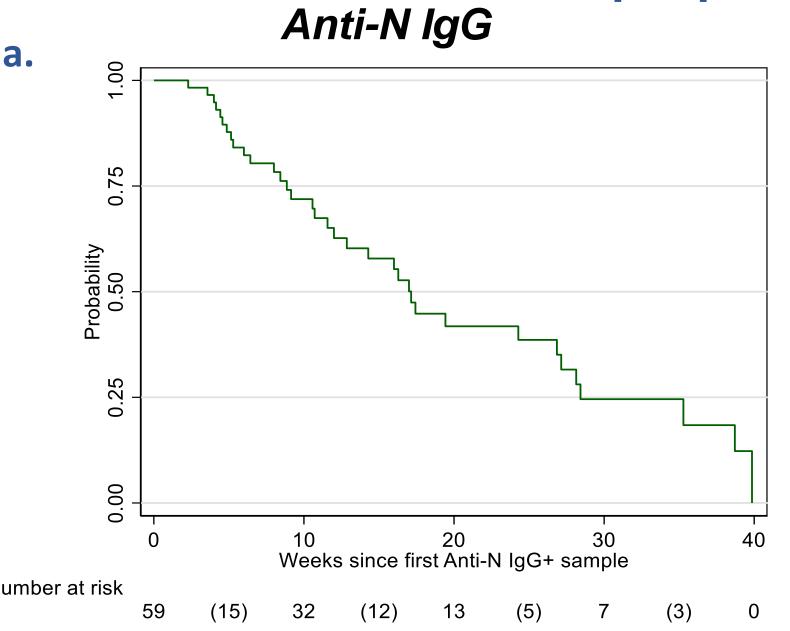
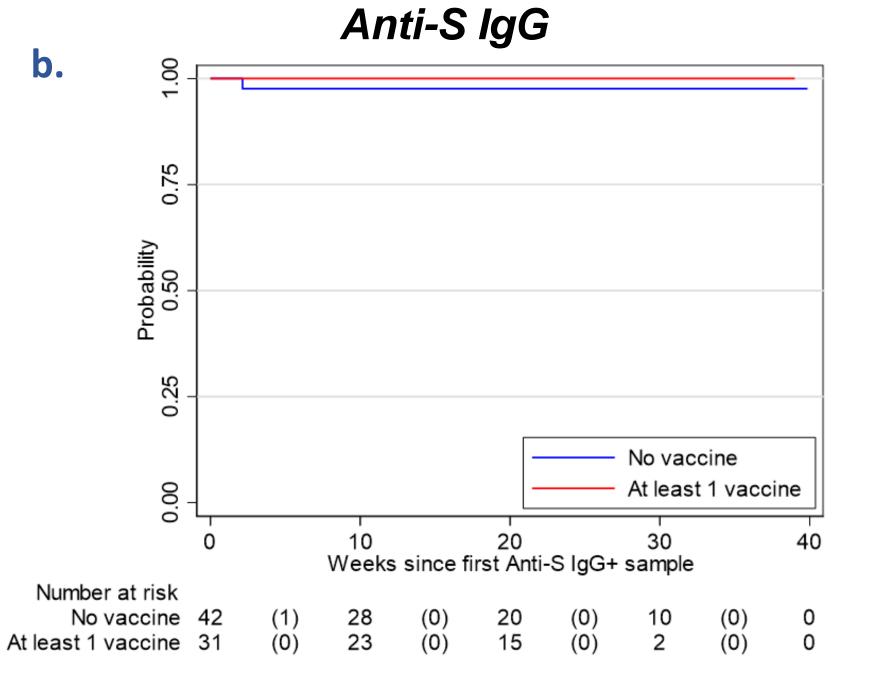




Figure 3. Time from first anti-N lgG+ or anti-S lgG+ to below positive threshold among pregnant people with prior SARS-CoV-2 infection

Among 59 participants with anti-N IgG+ on enrollment with ≥2 available samples:

Median time to anti-N IgG negative results was 28 weeks (IQR 14-50) after first RT-PCR+ or antigen+ results and 17 weeks (IQR 9-28) after baseline anti-N IgG+ sample.

Among 73 participants with anti-S IgG+ on enrollment with ≥2 available samples:

 Only 1 (unvaccinated) participant had a negative anti-S IgG Ab result by 22 weeks after first RT-PCR+ result and 2 weeks after baseline anti-S IgG+ sample.

Table 2. SAR-CoV-2 Ab results at enrollment and delivery

	n (%) or Median (IQR) N=49	
	Enrollment	Delivery
Vaccine status**		
No vaccine	26 (53)	21 (43)
Partial	0 (0)	1 (2)
Full	14 (29)	15 (31)
Boosted	9 (18)	12 (24)
Anti-N IgG+	37 (76)	23 (47)
Anti-S IgG+	46 (94)	48 (98)
Anti-S IgG+ (AU/ml)	25,000 (553-25,000)	25,000 (1,185-25,000)
No vaccine^	744 (232-6211)	1,109 (435-4,368)
Partial	N/A	17,187 (N/A)
Full	25,000 (25,000-25,000)	25,000 (12,189-25,000)
Boosted	25,000 (25,000-25,000)	25,000 (25,000-25,000)

^p<0.05 for median anti-S IgG (AU/ml) for participants with no vaccine vs. ≥1 vaccine (reprollment, median 1,109 vs. 25,000 AU/ml at delivery) by Wilcoxon rank sum

Among 49 participants with enrollment and delivery samples:

23 (47%) were anti-N IgG+, 48 (98%) were anti-S IgG+ by delivery median of 9 weeks (IQR 2-20) from enrollment

Median anti-S IgG was higher among participants who received ≥1 vaccine vs. no vaccine at enrollment and delivery.

CONCLUSIONS

- Among pregnant people with prior SARS-CoV-2 infection, duration of anti-S IgG+ Ab response was longer than anti-N IgG+ Ab, irrespective of vaccine status.
- Vaccination during pregnancy was associated with higher anti-S IgG levels at baseline and delivery compared to those unvaccinated.
- While anti-S IgG+ Ab were detectable for ≥6 months, longer term follow-up is needed to assess durability of hybrid immunity (vaccine + infection) vs. infection alone and potentially has implications for infant protection.

Collaborators

DEPARTMENT OF GLOBAL HEALTH SCHOOL OF PUBLIC HEALTH

UW Medicine UW SCHOOL OF MEDICINE

US Centers for Disease Control and Prevention

Contact: Sylvia LaCourse sylvial2@uw.edu

