

CASE WESTERN RESERVE

U.S. Department of Veterans Affairs

Exploring Cell Wall Targets to Overcome *Mycobacterium tuberculosis* (*Mtb*): Ceftriaxone (CRO) Inhibits Ldt_{Mt2}, a Major Peptidoglycan (PG) Synthase

¹Medical Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, OH; ³Dept of Internal Medicine, Case Western Reserve University (CWRU), Cleveland, OH; ⁴Research Service, VANEOHS, Cleveland, OH; ⁵Dept of Internal Medicine VIII, ¹Medical Service, Vane Vient, Cleveland, OH; ⁴Research Service, Vane Vient, Cleveland, OH; ⁴Researc Medical Oncology and Pneumology, University of Tübingen, Germany; ⁶Dept of Microbiology and Immunology, University of Rochester, NY; ⁷Dept of Biochemistry, CWRU, Cleveland, OH; ⁸National Institute of Allergy and Infectious Diseases, Bethesda, MD; ⁹Center for Discovery and Innovation, Hackensack, NJ; ¹⁰Division of Infectious Diseases & HIV Medicine, UH, Cleveland, OH; ¹¹Dept of Molecular Biology and Proteomics and Bioinformatics, CWRU and Cleveland, OH; ¹²Depts of Pharmacology and Proteomics and Bioinformatics, CWRU, Cleveland, OH; ¹²Depts of Pharmacology and Proteomics and Cleveland, OH; ¹²Depts of Pharmacology, CWRU, Cleveland, OH; ¹⁴Dept of Pharmacology, CWRU, Cleveland, OH; ¹⁴De

Introduction

Infections (DR) drug-resistant caused by Mycobacterium tuberculosis (Mtb) continue to challenge our health care systems. 500,000 cases of DR TB occur annually resulting in 150,000 deaths. Novel therapies are urgently needed. Bedaquiline, delamanid, linezolid, and pretomanid possess serious limitations.

 β -lactams such as amoxicillin/clavulanate, imipenem, and meropenem/clavulanate have not received significant attention as clinical regimens since these agents may add to the complexity of treatment

Mechanism of Action (MOA) - β -lactams

- Targets of β -lactams are D,D-transpeptidases (Ddts) and L,D-transpeptidases (Ldts).¹
- Inhibition of BlaC is a chromosomally encoded class A β -lactamase of *Mtb* limits β -lactam therapy. Clavulanate (CLA) inhibits BlaC.²

Can Ceftriaxone be used to treat Mtb?

- BlaC hydrolyzes CRO less efficiently compared to other cephems.² CRO inhibits Ldt_{Mt1}.^{1,3}
- The activity of CRO on Ldt_{Mt2}, a major PG synthase of *Mtb*, is unknown.

HYPOTHESIS

• Based upon work done with *M. abscessus* we hypothesized that CRO, as an expanded spectrum cephem, can inhibit Ldt_{Mt2} •If so, the combinations of CRO with meropenem (MEM) or imipenem (IPM) will also lower MICs more than each alone supporting the thesis of target redundancy

Methods

- Protein purification and electrospray ionization mass spectrometry (ESI-MS)
- Inhibition kinetics (K_{iapp}) with Ldt_{Mt2};
- AST and FIC index

Table 1. An

MEN **IPM** CRO +

Table

David C. Nguyen MD¹, Sarah N. Redmond MD², Khalid M. Dousa MD^{1,3}, Christopher R. Bethel⁴, Magdalena A. Taracila⁴, Qing Li³, Sebastian G. Kurz MD⁵, Martin S. Pavelka, Jr. PhD⁶, Krisztina Papp-Wallace PhD^{3,4,7}, Stephen M. Holland MD⁸, Barry Kreiswirth PhD⁹, W. Henry Boom MD^{3,10,11}, Robert A. Bonomo MD^{1,3,7,11,12}

Results

β-lactam and CLA MICs for Mtb H37Ra, H37Rv, and Clinical Isolates											
tibiotio(c)	MIC (µg/mL) by Mtb Isolate										
	H37Ra	H37Rv	#11.1	#15.1	#16.1	#17.2	#18.1	#19.2	#22.2	#23.1	#25.2
CRO	0.25	4	1	4	16	4	8	4	2	8	0.5
MEM	1	4	2	2	8	4	32	8	4	4	2
IPM	4		2	0.5	16	8	>64	>64	32	16	32
CLA	16	32	64	>64	16	32	>64	>64	32	16	16
/I + CRO 1:1	0.25	1	2	0.5	4	0.5	1	4	0.25	0.25	0.125
I + CRO 1:1			2	2	4	1	2	4	0.25	0.25	0.125
CLA 2.5 µg/mL	0.125		2	1	1	≤0.06	2	1	0.125	0.125	≤0.06

designates specific isolate from our panel

Biochemical Analyses

• Ldt_{Mt2} is a 408 amino acid protein.

• Δ (1-55) Ldt_{Mt2} was cloned with a His-tag at the N terminus, expressed in *E. coli* BL21(DE3) (IPTG induction) and purified using a nickel column

• A Synapt G2-Si high-resolution QTOF mass spectrometer was used to acquire mass spectra.

• ESI MS revealed the MW of Ldt_{Mt2} is 37888 ± 5 Da • Timed ESI-MS Analysis showed:

 \circ CRO (MW= 554) forms an adduct with Ldt_{Mt2} (MW= 38284) that undergoes post-acylation modification (loss of R2 group) and is stable for 120 minutes.

• MEM (MW=383) formed a 382 Da adduct; IMP (MW= 299) formed a 299 Da adduct; and CRO and MEM formed a 384 Da adduct. All species were stable for 120 minutes

2. <i>K_{i app}</i> of Ldt _{Mt2} with β-	-lactams	
Compound	<i>K_{i app}</i> (μM)	0 30000 31000 32000 33000 100
CRO	0.07 ± 0.007	
MEM	0.09 ± 0.009	
IPM	0.01 ± 0.002	0 ¹⁴⁻⁰¹⁻⁰¹⁻⁰⁴ 30000 31000 32000 33000

Acknowledgements: DCN received support from Rainbow Babies & Children's Foundation and NIH T32 Al07024; contact: dcn21@case.edu

6 *Mtb* isolates had FIC Index < 0.5 suggesting synergy with CRO and **MEM/IPM. Fixed concentration CLA** Iowered CRO MIC by > 2-fold dilution for 8 of 10 isolates tested (MICs bolded).

Synergy (FIC Index <0.5) Key:

CRO + MEM only

CRO + MEM and IPM

No isolate with FIC Index < 0.5 with CRO and IPM alone

← Figure 1. ESI-MS chromatograms with Ldt_{Mt2} alone and incubated with CRO 5 min, 15 min, 30 min, and 120 min. $[Ldt_{Mt_2}] = 13.2$ μM and [CRO] = 264 μM (1:20 ratio). Mass peaks of Ldt_{Mt2} are in blue and mass peaks of Ldt_{Mt2}-CRO complexes are in red.

Observed changes in MW were +396 Da which is less than the nominal MW of CRO. This can be accounted for by post-acylation elimination of the R2 side group (see Fig. 3).

Figure 2. ESI-MS chromatograms with Ldt_{Mt2} incubated with CRO and MEM together. Only mass peaks corresponding to complexes with MEM were captured. [Ldt_{Mt2}] = 13.2 μ M and both [CRO] and [MEM] = 264μ M (1:20 ratio). Mass peaks of Ldt_{Mt2} are in blue and mass peaks of Ldt_{Mt2}-MEM complexes are in green.

Rainbow Babies & Children's Hospital

0

Figure 2. CRO-Ldt_{Mt2} adduct formation leading to elimination of the **R2 side group**.

Conclusion

- Acknowledging that MEM and IPM inhibit other PG synthases (PonA1, Ldt_{Mt1}, Ldt_{Mt3}), these results lead us to hypothesize that the synergistic combination of CRO + MEM/IPM inhibit the growth of *Mtb* by the combined inactivation of multiple cell wall synthesizing enzymes.
- Our observations support further exploration of the notion of "target redundancy" as an approach to treat multidrugresistant mycobacteria with β -lactams.
- The clinical implications of using a "once a day" administered cephalosporin in treating Mtb infections remain to be tested in animal models.

References

- Lavollay M, Arthur M, Fourgeaud M, et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol. 2008; 190: 4360-4366. Hugonnet J-E, Blanchard JS. Irreversible inhibition of the *Mycobacterium tuberculosis* β-lactamase by
- clavulanate. Biochemistry. 2007; 46: 11998-12004.
- Dubée V, Triboulet S, Mainardi J-L, et al. Inactivation of Mycobacterium tuberculosis L,D-transpeptidase Ldt-Mt1 by carbapenems and cephalosporins. Antimicrob Agents Chemother. 2012; 56: 4189-4195.
- Triboulet S, Dubée V, Lecoq L, et al. Kinetic features of L,D-transpeptidase inactivation critical for β-lactam antibacterial activity. PLoS ONE. 2013; 8: e67831