HEALTH BEHAVIORS ASSOCIATED WITH ACUTE RESPIRATORY ILLNESS **BEFORE AND DURING THE SARS-COV-2 PANDEMIC – KING COUNTY, WASHINGTON** Erin Chung MD¹, Jessica Heimonen MPH², Jessica O'Hanlon BS², Fric J Chow MD, MS, MPH², Constance E. Ogokeh, MPH^{3,4}, Melissa A. Rolfes, PhD, MPH³,

James P Hughes PhD^{5,6}, Timothy M Uyeki MD MPH MPP³, Lea M Starita PhD^{7,8}, Samara Hoag MN RN⁹, Janet A Englund MD¹⁰, Helen Y Chu MD MPH²

¹ Department of Pediatrics, University of Washington, Seattle, WA, USA³ Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA⁴ Military and Health Research Foundation, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Foundation, Laurel, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Infectious Disease Division, Fred Hutchinson Center, Seattle, WA, USA⁵ Vaccine and Vaccine and Vaccine and Vaccin ⁸ Department of Genome Sciences, University of Washington, Seattle, WA, USA ⁹ Student Health Services, Seattle, WA, USA ⁹ Student Health Services, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle Public Schools, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division of Pediatrics, University of Washington, Seattle, WA, USA ¹⁰ Division, Seattle, WA, USA ¹⁰

BACKGROUND

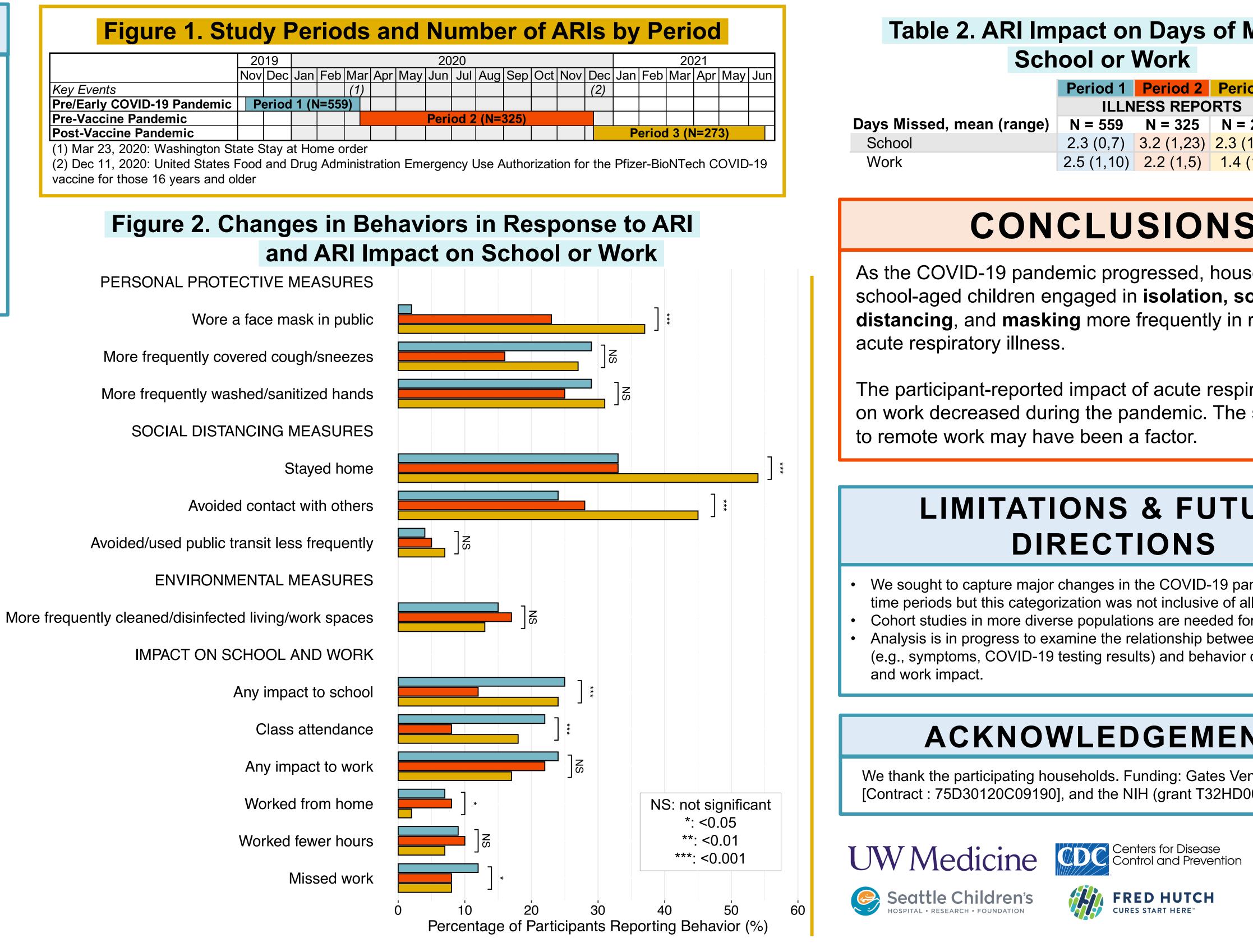
- Non-pharmaceutical interventions (NPIs), such as masking and social distancing, can reduce SARS-CoV-2 transmission.
- Longitudinal health behavioral data in individuals with acute respiratory illness (ARI) during the COVID-19 pandemic are limited.
- We describe changes in adherence to NPIs and the impact of ARIs on work or school in families during 3 time periods before and during the COVID-19 pandemic.

METHODS

- From November 14, 2019 to June 19, 2021, households with school-aged children in King County, Washington, USA, were remotely monitored weekly for symptoms of acute respiratory illness (ARI) in a longitudinal cohort study.
- Eligible households had >3 individuals sleeping in the home >4 days per week with 1 child (aged 3 months - 17 years).
- ARI was defined as cough or ≥ 2 <u>qualifying symptoms</u>:
 - <u>All participants</u>: fever, sore throat, runny nose, muscle or body aches, headache, difficulty breathing, fatigue, nausea or vomiting
 - <u>Additionally, for participants < 18 years of age</u>: ear pain or drainage, rash, and diarrhea
- At 7 days after initial report, participants with ARI were asked about illness-related behavior changes (e.g. masking, isolation, hand hygiene) and illness impacts on school and work.
- Using generalized estimating equations for household clusters, we compared the frequency of behavior changes and school and work impact over 3 time periods (Figure 1).

RESULTS

Of 1861 participants from 470 households enrolled in the study: • 698 (38%) participants from 328 (70%) households reported 1157 acute respiratory illnesses (ARIs).


• The percentage of ill participants who reported masking, staying home, and avoiding contact with others rose over time.

• Masking increased from the pre-pandemic period. The percentage of ill participants with school impacted was lower in the pre-vaccine pandemic (Period 2) but similar prepandemic (Period 1) and post-vaccine approval (Period 3). The percentage of ill participants who worked from home and missed work decreased over time.

Table 1. Demographic Data for Participants

Reporting ARI	Period 1	Period 2	Period 3	
	UNIQUE INDIVIDUALS			
Demographic Characteristics	N=350	N=186	N=162	
Age (years)				
Median [Range]	28.0 [0, 84.0]	36.5 [0, 75.0]	29.5 [0, 56.0]	
<5	38 (10.9%)	22 (11.8%)	23 (14.2%)	
5-12	116 (33.1%)	35 (18.8%)	42 (25.9%)	
13-17	18 (5.1%)	8 (4.3%)	13 (8.0%)	
≥18	178 (50.1%)	121 (65.1%)	84 (51.9%)	
Sex				
Female	188 (53.7%)	121 (65.1%)	82 (50.6%)	
Race/Ethnicity				
White	273 (78.0%)	· · · · · · · · · · · · · · · · · · ·	· · /	
Asian	26 (7.4%)	12 (6.5%)	1 (0.6%)	
Black	4 (1.1%)	1 (0.5%)	2 (1.2%)	
Other	41 (11.7%)	19 (10.2%)	9 (5.6%)	
Hispanic	20 (5.7%)	17 (9.1%)	10 (6.2%)	
Highest Education Level	N=178	N=121	N=84	
High school graduate, GED, or less	3 (1.7%)	3 (2.5%)	2 (2.4%)	
Some college	15 (8.4%)	13 (10.7%)	8 (9.5%)	
Bachelor's degree	77 (43.3%)	43 (35.5%)	34 (40.5%)	
Advanced degree	83 (46.6%)	62 (51.2%)	40 (47.6%)	
	UNIQUE HOUSEHOLDS			
	N=148	N=90	N=90	
Size, median [range]	4.0 [3.0, 7.0]	4.0 [3.0, 7.0]	4.0 [3.0, 7.0]	
Children in Household				
Age <5 years	65 (43.9%)	42 (46.7%)	39 (43.3%)	
Age 5-12 years	97 (65.5%)	56 (62.2%)	63 (70.0%)	
Age 13-18 years	33 (22.3%)	23 (25.6%)	21 (23.3%)	
Attends daycare	39 (26.4%)	31 (34.4%)	26 (28.9%)	
Annual Household Income (USD)				
<\$75,000	6 (4.1%)	6 (6.7%)	3 (3.3%)	
\$75,000 - \$150,000	49 (33.1%)	13 (14.4%)	27 (30.0%)	
>\$150,000	77 (52.0%)	65 (72.2%)	52 (57.8%)	

Key Events Pre/Early COVID-19 Pandemic Pre-Vaccine Pandemic **Post-Vaccine Pandemic** vaccine for those 16 years and older

Contact: Erin Chung, MD ec72@uw.edu

Table 2. ARI Impact on Days of Missed School or Work

	Period 1Period 2Period 3ILLNESS REPORTS			P-value
Days Missed, mean (range)	N = 559	N = 325	N = 273	
School	2.3 (0,7)	3.2 (1,23)	2.3 (1,10)	0.49
Work	2.5 (1,10)	2.2 (1,5)	1.4 (1,3)	< 0.001***

CONCLUSIONS

As the COVID-19 pandemic progressed, households with school-aged children engaged in isolation, social distancing, and masking more frequently in response to acute respiratory illness.

The participant-reported impact of acute respiratory illness on work decreased during the pandemic. The societal shift to remote work may have been a factor.

LIMITATIONS & FUTURE DIRECTIONS

- We sought to capture major changes in the COVID-19 pandemic with our 3 time periods but this categorization was not inclusive of all external factors.
- Cohort studies in more diverse populations are needed for generalizability.
- Analysis is in progress to examine the relationship between other predictors (e.g., symptoms, COVID-19 testing results) and behavior change or school

ACKNOWLEDGEMENTS

We thank the participating households. Funding: Gates Ventures, the CDC [Contract : 75D30120C09190], and the NIH (grant T32HD007233 to EC).

BROTMAN BATY

Seattle Public Schools