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COVID-19 drug development faces A new architecture is proposed, BindingDB: high quality data after TORR P | [ IO
long R&D time and low success rate. including two major innovations: cleaning the consensus database.
o Drug repurposing finds effective cures from 1. Use Simp|6, Wid6|y available 1D Figure 2. Kd-labeled data were used and converted to binary values according to literature threshold 100 nM. Training

existing drugs to lower drug R&D time and cost. drug/protein sequence as input data was in balance. BindingDB is a commonly-used benchmark database for drug-protein studies with about 2.4 million
o Protein-Ligand Interaction (PLI) or drug-target entries of drug-protein interaction data in total.
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It indicates whether a candidate drug can bind to .34« Drug SMILES (left) and protein S5 Result: Validation Appllcatlon
a target protein and thus inhibit its function to "7, sequence (right) are unique, 1D

cure the disease. letter representations, available in  $YCdRon.

o Computational-based methods have been X almost all drug-protein databases ~ Our model reaches high accuracies Optimize model for drug developers
developed to predict DTl and to reduce the size of on realistic, unseen drugs & proteins. to repurpose drugs for new targets.
drug pool and speed up drug discovery. g .
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O Some models have low accuracy because they I e X ranking using common binding affinities (Kd, Ki, etc.), and
select features based on expert knowledge of the Etia B the current Kd test showed a better performance. The
target protem, Wthh loses key information. - 20 L l X X : regression results cannot directly show disease-curing

o Others haye |lm|Led datahbegausebth?\/ reply on 3D [ nlwl-T-] Lo ability of drugs because published models do not use a
structure input that are hard to obtain. N i s IR SR I : consensus binding affinity. Therefore, classification is

o No detailed analysis on the generalization ability to NN 25— Figure 3. A randomly reserved part of the BindingDB

9 I N I recommended.
unseen drugs/targets. dataset was grouped into four cases for testing, according

Fig 1. Principle of NLP-inspired deep learning-based to whether the drug molecules or the proteins are used in R RMSE  MAE R*  MSE
ObjECtiVe methods to embed drug SMILES strings (Mol2vec) and the training set. (Note that the drug-target pairs in the DeepPll ey 0.84 080  0.60 071  0.64
protein sequences (ProSE). test set are excluded from the training set.)

DeepCDA  0.84 N/A N/A N/A 0.808

This project builds a deep neural 2. Use a composite architecture employing Our model is better than the
network-based model to predict PLI CNN and LSTM to extract features locally baseline method by 76%. Verification on COVID-19 data
and verify it on COVID-19 application. and gIOba”y together. We compare with DeepCDA, a recently published DT As a preli.minary attempt, model trained on Bind-ingDB
Highlights e prediction model that reported to be better than previous was applied to a recent COVID-19 dataset targeting the
o Using NLP-inspired embedding methods to treat T cwaanmos | Fig 2. Architecture of DeepLPI model. models. DeeplPlis 76% better in accuracy metric AUROC 3CL-protease, which reported 897 small molecule drugs.
1-D drue molecular and protein nce inout for B o The model uses raw strings of in classification tasks. Our model is better than the baseline method by 25%.
, ug molecular aha protein sequence input 10 ReLl & Dropous Rell & Dropour molecular SMILES and protein
h'gher dCCuUracy. | | . B sequences as inputs. The embedded BindingDB AUROC Sensitivity Specificity PPV NPV AUROC Sens. Spec. PPV NPV
o Using a new model architecture that combined 2 vectors for the drug SMILES and the DeepLPl 0.790 0.684 0.773 0.671 0.783 DeeplLPl 0.61 0.538 0576 0.110 0.928
CNN and LSTM to capture local and global s Normaze protein sequences are then fed into
information together. The LSTM module gives a the respective head module and DeepCDA  0.448  0.000 1.0 N/A  0.596 DeepCDA 0.40 0.0 1.0 N/A 0.911
better connection between the molecular and * ! ResNet-based CNN module to extract ]
protein sequences. e e featlurss' ‘(’Vh'Ch were Concate"‘t""_tec)" Test on external data (Davis dataset) Future Work
) R poole max-pooling  operation), . ea = _ =
realistic test dataset, where the drug or target — ¢' " finally fed into an MLP module. The | _ o |
orotein from a new disease are likely not appeared - final output is passed through a2 The BindingDB-trained model is applied to experiment We will use our pretrained model to predict interactions
in the training dataset. : ?Ii;:i?cligatiorfutrc])cmr)endict Loi;dm b/lrr:srr]\j Davis data, another common benchmark in studies of between all types of FDA approvegl drugs a'nd the 3CL
o Repurpose drugs for COVID-19 by deploying the rt\ binding labels P © drug-protein interactions. AUROC score of our model protea;e of SARS'COV'Z' Top candidates W'th ﬁrgngest
trained model on COVID-19 feature proteins. praciction | reached 0.53, 25% better than DeepCDA. interactions will be suggested for wet lab verifications.
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