Infective Endocarditis in *Enterococcus faecalis* Bloodstream Infections: **Prevalence, Risk Factors, and Patient Outcomes**

Background

- Enterococcus species bloodstream infection (BSI) mortality risk: 17-34%^{1,2}
- Of all gram positive causes of infective endocarditis (IE), *E. faecalis* accounts for mostly 5-15% (up 33%) in several reviews^{3,4,5}
- IE prevalence with *E. faecalis* BSI is widely ranging between 4-26% in W. European studies (Denmark, Sweden, Spain), mainly 11-13%^{6,7,8,9,10}
- Tools for IE risk:
 - Duke's Criteria
 - NOVA Score (≥4 high risk for IE, <4 low risk for IE)
 - □ N: Number positive blood cultures, 5 pts
 - O: unknown Origin of bacteremia, 4 pts
 - □ V: prior Valvular heart disease, 2 pts
 - A: Auscultation of a heart murmur, 1 pt

Study Aims

Pri<u>mary</u>

- Prevalence of IE in *E. faecalis* BSI
- Risk factors predictive of IE
 - Comorbidities:
 - □ HTN, DM, COPD, ESRD, Cancer, Liver disease, CHF, Valvular heart disease, Cardiac Implantable Electronic Device (CIED), Immunosuppression, Alcoholism, Smoking, IVDU
 - Clinical variables:
 - □ Origin: community vs. nosocomial
 - □ Source: unknown vs. known
 - □ NOVA scores

Secondary

- Clinical outcomes:
 - 30- and 60-day mortality
 - 30- and 60-day readmissions

- Inclusion:
- Exclusion:

Tab Vari Age LOS Gen DM COP ESR Liver Cano CHF

> Valv Alco Carc

Mor Poly Orig

NOV

NOV

Drew Engers, MD,¹ Madiha Siddiqui, MD², Ali Abunayla, MBChB³, Rajasekhar Jagarlamudi, MD¹

¹ Division of Infectious Diseases, ² Department of Internal Medicine, ³ Department of Academic Research, St. Joseph Mercy Hospital, Ann Arbor, MI

Methods

Retrospective cohort study

− Age ≥ 18 – Hospitalized at St. Joseph Mercy Hospital Ann Arbor, Livingston, Chelsea, and Livonia - 1/1/2018 - 12/31/2020

 Entered hospice or did not receive directed therapy within 48 hrs

Statistical analysis: - Bivariate analysis (fisher's exact test, chi square), logistic regression modeling

Results

le 1. Demographic and Clinical Variables					
able		# of patients (n=167)			
(mean, SD)		71.66 (14.81)			
(days, IQR)		7 [5, 11]			
der	Female	58 (34.73%)			
	Male	109 (65.27%)			
		20 (11.98%)			
		71 (42.51%)			
D		43 (25.75%)			
)		63 (37.72%)			
r disease		20 (11.98%)			
cer		12 (7.19%)			
		51 (30.54%)			
ular heart disease		40 (23.95%)			
hol abuse		2 (1.2%)			
liac implanted device		24 (14.37%)			
omicrobial infection		123 (73.65%)			
microbial infection		44 (26.35%)			
in of infection	Community acquired	156 (93.41%)			
	Nosocomial	11 (6.59%)			
ction source	Known	158 (94.61%)			
	Unknown/other	9 (5.39%)			
'A-1	<4	140 (83.83%)			
	<u>></u> 4	27 (16.17%)			
/A-2	<4	22 (13.17%)			
	>4	145 (86.83%)			

Table 2. Variables
Variable
Gender
DM
COPD
ESRD
Liver disease
Cancer
CHF
Valvular heart disease
Alcohol abuse
Cardiac implanted dev
Polymicrobial infection
Origin of infection
Source of infection
NOVA-1
NOVA-2
Table 3. Logis

Table 3. Logistic Regresion Modeling of IE status				
Variable	OR (95% CI)	p-value		
Gender: Male	1.62 (0.50, 5.26)	0.42		
DM	0.71 (0.25, 2.06)	0.53		
COPD	1.61 (0.52, 5.05)	0.41		
ESRD	2.07 (0.70, 6.12)	0.18		
CHF	1.19 (0.39, 3.69)	0.76		
Valvular heart disease	2.55 (0.89, 7.34)	0.08		
Cardiac implanted device	3.45 (1.06, 11.17)	0.04*		
Source of infection: known	1.08 (0.14, 8.06)	0.94		

Associated with IE No IE p-value IE 5 (25%) 53 (36.05%) Female 0.47 94 (63.95%) 15 (75%) Male 63 (42.86%) 8 (40%) 0.99 7 (35%) 0.46 36 (24.49%) 11 (55%) 0.14 52 (35.37%) 19 (12.93%) 1 (5%) 0.47 11 (7.48%) 1 (5%) >0.99 41 (27.89%) 10 (50%) 0.08 10 (50%) 30 (20.41%) 0.01 * 0 (0%) 2 (1.36%) >0.99 7 (35%) 0.01 * 17 (11.56%) ice 43 (29.25%) 1 (5%) 0.04 * 136 (92.52%) 20 (100%) 0.36 Community 11 (7.48%) 0 (0%) Nosocomial 140 (95.24%) 18 (90%) 0.29 Known 7 (4.76%) 2 (10%) Unknowr 125 (85.03%) 15 (75%) 0.33 <4 5 (25%) <u>></u>4 22 (14.97%) 3 (15%) <4 19 (12.93%) 0.73 128 (87.07%) 17 (85%) >4

|--|

Variable	OR (95% CI)	p-value
Gender: Male	1.62 (0.50, 5.26)	0.42
DM	0.71 (0.25, 2.06)	0.53
COPD	1.61 (0.52, 5.05)	0.41
ESRD	2.07 (0.70, 6.12)	0.18
CHF	1.19 (0.39, 3.69)	0.76
Valvular heart disease	2.55 (0.89, 7.34)	0.08
Cardiac implanted device	3.45 (1.06, 11.17)	0.04*
Source of infection: known	1.08 (0.14, 8.06)	0.94

Conclusions

- IE prevalence: 12% in patients with *E. faecalis* BSI
- Greatest risk for IE with Valvular heart disease and a CIED
- Prior traditional factors not associated with increased risk IE
 - Community acquired origin
 - Unknown source of infection
 - NOVA scores
- IE status did not affect mortality, readmissions
- Mortality and readmissions are high with E. faecalis BSI

References

- 1. Shlaes DM, et al., Enterococcal bacteremia without endocarditis. Arch Intern Med. 1981 Apr;141(5):578-81
- 3. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46-65.
- 4. Murdoch DR, et al., Clinical Presentation, Etiology, and Outcome of Infective Endocarditis in the 21st Century: The
- 5. Andersen MH, et al., Risk for infective endocarditis in bacteremia with Gram positive cocci. Infection. 2020 Dec:48(6):905-912.
- 6. Pinholt M, et al., Danish Collaborative Bacteraemia Network. Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect. 2014 Feb;20(2):145-51
- 7. Bouza E, et al., The NOVA score: a proposal to reduce the need for transesophageal echocardiography in patients with enterococcal bacteremia. Clin Infect Dis. 2015 Feb 15;60(4):528-35.
- 8. Dahl A, et al., Risk Factors of Endocarditis in Patients With Enterococcus faecalis Bacteremia: External Validation of the NOVA Score. Clin Infect Dis. 2016 Sep 15:63(6):771-5.
- 9. Berge A, et al., The DENOVA score efficiently identifies patients with monomicrobial Enterococcus faecalis
- bacteremia where echocardiography is not necessary. Infection. 2019 Feb;47(1):45-50. 10. Dahl A, et al., Prevalence of Infective Endocarditis in Enterococcus faecalis Bacteremia. J Am Coll Cardiol. 2019 Jul 16:74(2):193-201.

Disclosures: None

rinity Health

Contact: Drew Engers rew.engers001@trinity-health.org 301 McAuley Dr., Ypsilanti, MI 48197 734) 712-8600

odeling of IE status

2. Gray J, et al., Enterococcal bacteraemia: a prospective study of 125 episodes. J Hosp Infect. 1994 Jul;27(3):179-86. International Collaboration on Endocarditis–Prospective Cohort Study. Arch Intern Med. 2009;169(5):463–473