Klebsiella aerogenes: Are there implications to taxonomic accuracy?

L. Nicholas Herrera MD Matthew Brown, PharmD W. Seth Edwards, PharmD Sixto Leal MD, PhD Joshua Stripling, MD Rachael Lee, MD

Background

- With advances is genomics, microbiologists can accurately rename existing bacteria: examples include *Clostrioides difficile*, Cutibacterium acnes, and Klebsiella aerogenes.
- Due to differences in Ambler Class C (AmpC) beta-lactamase production, there are therapeutic differences between Klebsiella aerogenes and the more commonly seen Klebsiella pneumoniae
- In May 2018, UAB Hospital updated the change in nomenclature in the Electronic Medical Record (EMR) while maintaining the same selective susceptibility reporting for AmpC associated organisms
- We sought measure differences in therapeutic choices and patient outcomes 'pre-' and 'post-' this change.

Methods

- Population:
 - Monomicrobial *K. aerogenes* bacteremia from May 2016 to May 2020 from UAB
 - > 18 years old
- Exclusions:
 - Death within 48 hours of drawing blood cultures
 - Recurrences of bacteremia
- Recorded:
 - Patient demographics
 - Therapeutic details
 - Appropriate therapy was defined as an antibiotic with reported susceptibility with consideration of AmpC induction for a duration appropriate to clinical syndrome with minimum of 7 days
 - Microbiologic data
 - Recurrence rates and mortality
- Descriptive statistics were performed

Selective susceptibility reporting and appropriate documentation s in the EMR was not associated with increased morbidity and incorrect therapeutic decisions after microbiologic changes in nomenclature

Results

	Total (n=38)	'Pre-' (n=21)	'Post-' (n=17)	
∖ge	57.1 ± 16.4	56.8 ± 16.4	57.4 ± 17.4	p=0.92
<i>l</i> ale	30 (78.9%)	20 (95.2%)	10 (58.8%)	p=0.006
Source				p=0.09
GI	14 (36.8%)	9 (42.9%)	5 (29.4%)	
GU	9 (23.6%)	6 (28.5%)	3 (17.6%)	
Respiratory	8 (21%)	1 (4.8%)	7 (41.2%)	
Line	6 (15.8%)	4 (19%)	2 (11.8%)	
Soft Tissue	1 (2.6%)	1 (4.8%)	0 (0%)	

 Table 1: Patient Demographics

- Similar race and comorbidities
- Similar rates in nosocomial acquisition and concomitant infection

Rates of Appropriate therapy • "Pre-": 95.2% • "Post-": 88.2% p=.43

Conclusions and Clinical Implications

- may potentially affect optimization of antibiotics.
- As the ID consultants, we must be aware of these name changes and provide updated recommendations.
- implications.

The University of Alabama at Birmingham

VANDERBILT VUNIVERSITY

MEDICAL CENTER

Antimicrobial Selection

- Cefepime: most chosen inpatient therapy • "Pre-": 57.1%
- "Post-" 64.7%
- Oral ciprofloxacin: most chosen outpatient therapy
 - "Pre-": 57.1%
 - "Post-" 64.7%
- No use of ceftriaxone in either time-frame
- Similar rates of transition to oral therapy

• Care must be taken when taxonomic changes of clinically relevant bacteria

• This is a small single center retrospective study. Larger multi-center studies should be performed based on local approaches to determine clinical

Unable to prove causality between selective reporting and our findings