

Poster 1230

Identification of subclinical healthcare-associated clusters of *Staphylococcus* epidermidis in an orthopedic patient population.

¹Samantha Simon, ²Mohamed Sater, ²Ian Herriott, ²Miriam Huntley, ¹Brian L. Hollenbeck

¹New England Baptist Hospital Boston MA, ²Day Zero Diagnostics Boston, MA

CONTACT INFORMATION:
Brian Hollenbeck, MD
New England Baptist Hospital
125 Parker Hill Ave,
Boston MA 02120
P: 617-754-5900
F: 617-754-6507
bhollenb@nebh.org

Introduction

Prosthetic joint infections (PJIs) cause increased morbidity and mortality for patients. *Staphylococcus epidermidis* (*S. epidermidis*) can readily form biofilm on implanted medical devices, making this typically commensal species a common cause of PJIs^{1,2}. In comparison with *Staphylococcus aureus* or Gram-negative causes of PJI, monomicrobial infections caused by *S. epidermidis* tend to manifest farther out from the original procedure and may demonstrate more subtle clinical manifestations of infection such as indolent pain, swelling, and less pronounced elevations in synovial cell count and systemic inflammatory markers¹.

It is currently thought that the majority of *S. epidermidis* infections originate from a patient's own flora and are seeded into the prosthetic joint at the time of surgery (perhaps aided by resistance or virulence determinants) or at a later time through direct inoculation or hematogenous spread³.

Objective

This study investigates genetic, epidemiologic, and environmental factors contributing to positive *S. epidermidis* joint cultures and PJI.

Methods

We identified 60 *S. epidermidis* isolates from hip or knee cultures obtained between 2017-2020 in patients with one or more prior intraarticular procedures at our hospital. Whole genome sequencing and single nucleotide polymorphism (SNP) based clonality analysis was performed using the epiXactPRO® service at Day Zero Diagnostics, including species identification, in silico multi-locus sequence typing (MLST), phylogenomic analysis, along with genotypic assessment of the prevalence of specific antibiotic resistance and virulence genes. Additional epidemiologic review was performed to compare cluster and non-cluster cases.

Results

25 (55.5)

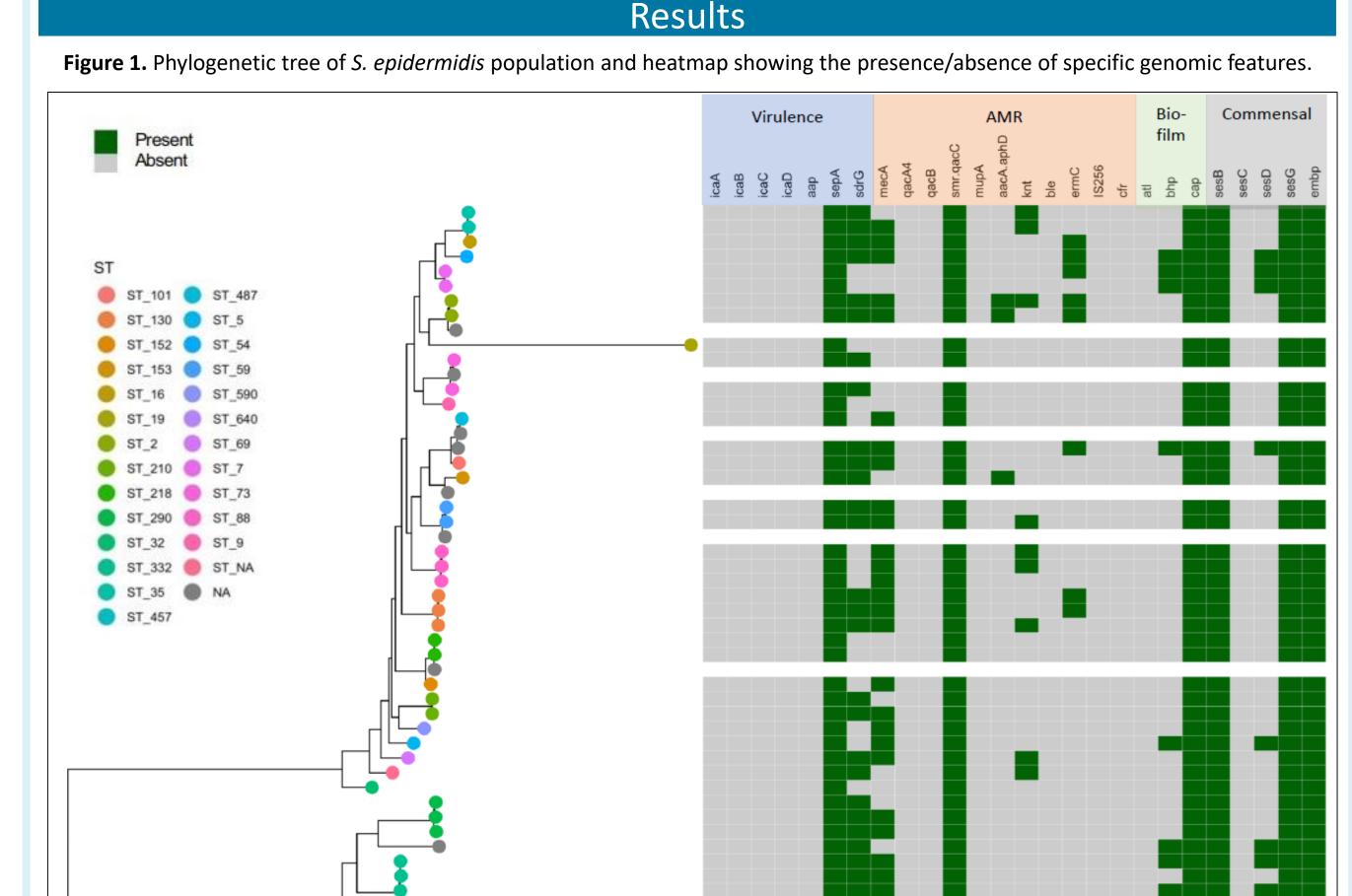
Total

Age: < 65

Table 1. Univariate table of select patient demographics, healthcare history, and infection information.

15 (48.4)

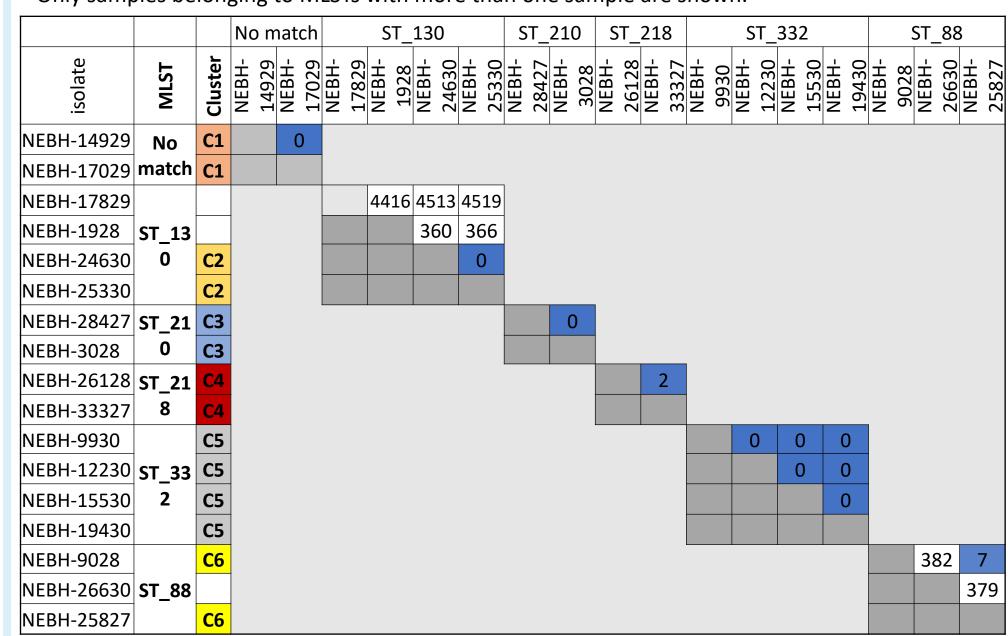
Clonal


Isolate

14 (31.1)

No. (%) P-Value

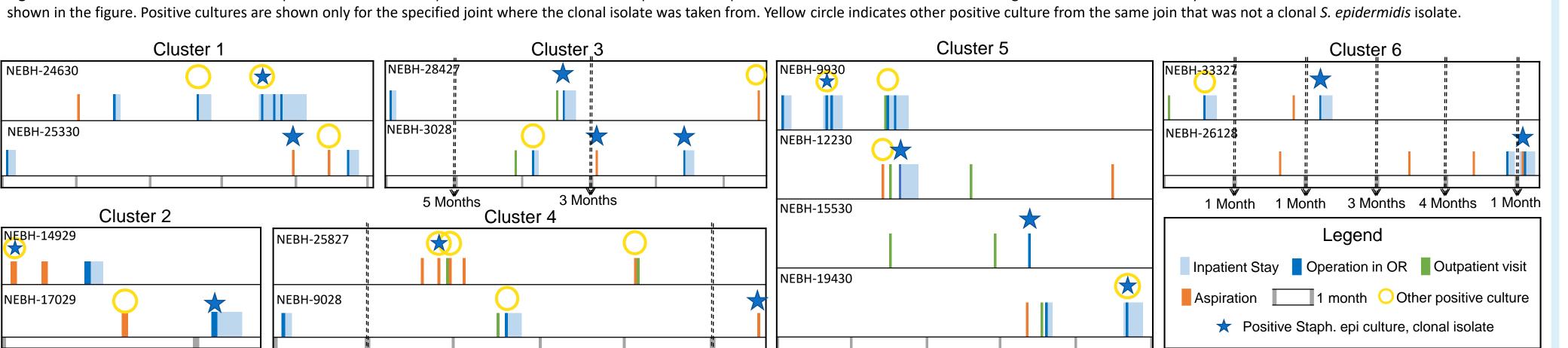
0				0.150
Age: ≥ 65	20 (44.5)	16 (51.6)	4 (28.6)	0.130
Male	35 (77.8)	24 (77.4)	11 (78.6)	0.931
Female	10 (22.2)	7 (22.6)	3 (21.4)	
Нір	17 (37.8)	10 (32.3)	7 (50.0)	0.256
Knee	28 (62.2)	21 (67.7)	7 (50.0)	
Primary	16 (39.0)	12 (41.4)	4 (33.3)	0.631
Revision	25 (61.0)	17 (58.6)	8 (66.7)	
Native Joint	4 (8.9)	2 (6.4)	2 (14.3)	0.393
Arthroplasty	41 (91.1)	29 (93.6)	12 (85.7)	
Met MSIS* cri	teria for PJI			
No	18 (43.9)	12 (41.4)	6 (50.0)	0.613
Yes	23 (56.1)	17 (58.6)	6 (50.0)	
Days between	prior interve	ention and po	sitive culture	}
< 30 (ref)	16 (35.6)	12 (38.7)	4 (28.6)	
30 -119		11 (35.5)		0.916
≥ 120	-	8 (25.8)		
Prior surgery a	at an outside	hospital		
No	20 (44.5)	14 (45.2)	6 (42.9)	0.886
Yes	25 (55.5)	17 (54.8)	8 (57.1)	
Number of sui	rgeries at this	hospital prio	r to positive	culture
0	4 (8.9)	2 (6.4)	2 (14.3)	0.418
1 (ref)	, ,	17 (54.8)	, ,	
≥ 2	17 (37.8)	12 (38.7)	5 (35.7)	0.986
Number of asp	oirations at th	nis hospital pr	ior to positiv	ve culture
0	25 (55.6)	17 (54.8)	8 (57.1)	0.942
1 (ref)	9 (20.0)	6 (19.4)	3 (21.4)	•
≥ 2	11 (24.4)	8 (25.8)	3 (21.4)	0.769
mecA present	**			
No	15 (34.9)	11 (36.7)	4 (30.8)	0.709
Yes	28 (65.1)	19 (63.3)	9 (69.2)	
Resistance to	Oxacillin			
No	18 (40.0)	12 (38.7)	6 (42.9)	0.793
Yes	27 (60.0)	19 (61.3)	8 (57.1)	
* MSIS: Mu	sculoskeleta	I Infection Sc	ociety.	


^{**} mecC was not present in any of the isolates.

5 Months

Results

Figure 2. SNP distance values for all pairs of samples of matching multi-locus sequence types. Only samples belonging to MLSTs with more than one sample are shown.



Conclusion

The majority of *S. epidermidis* isolated from clinical joint samples are diverse in origin, but we identified a subset of 31% that belonged to subclinical healthcare-associated clusters. Clusters appeared to resolve spontaneously over time, suggesting benefit to routine infection control practices. Of the specific resistance and virulence genes tested, ubiquitous presence of the *smr/qacC* gene is of particular concern.

Results

Figure 3. Overview of healthcare visits for patients with clonal *S. epidermidis* isolates. Each row represents one patient. The bottom row of each cluster's figure shows the time scale by month. Arrows indicate months that are not shown in the figure. Positive cultures are shown only for the specified joint where the clonal isolate was taken from. Yellow circle indicates other positive culture from the same join that was not a clonal *S. epidermidis* isolate.

3 Months

References

- Lowy, Fanklin D.
 "Staphylococcus Epidermidis Infections." Annals of Internal Medicine, vol. 99, no. 6, 1983, p 834.
- 2. Post, Virginia, et al.

 "Comparative Genomics Study of Staphylococcus Epidermidis Isolates from Orthopedic-Device-Related Infections Correlated with Patient Outcome." Journal of Clinical Microbiology, vol. 55, no. 10, 2017, pp. 3089–3103.
- Sánchez, A., et al. "Pathogenesis of Staphylococcus Epidermidis in Prosthetic Joint Infections:
 Can Identification of Virulence Genes Differentiate between Infecting and Commensal Strains?" Journal of Hospital Infection, vol. 105, no. 3, 2020, pp. 561–568.