enel X

Bill Savings, Market Revenues, and More: **Unlocking the Stacked Value of Storage Assets**

Integrating battery storage into energy projects provides great benefits...

Kaximize self-consumption from solar and provide peak

Value stacking is complex, but crucial for project economics. We designed DER.OS around these challenges.

An effective battery optimization algorithm needs to continuously weigh the benefits of various revenue streams. These value streams come from different sources and are contingent on a multitude of rapidly changing factors, making optimization software essential to maximizing value.

Enel X DER.OS Cloud-based energy management

- shaving capabilities
- Tap into valuable revenue streams for dispatchable resources (capacity markets, demand response, and more)
- (V) Provide resiliency solutions and microgrid capabilities to businesses

...but optimizing a dispatch strategy is challenging.

A battery operator needs to have:

- Intelligent software to evaluate the value and opportunity cost of different battery applications
- C Extensive market expertise and experience dispatching assets into wholesale energy programs
- β A deep understanding of customer objectives and constraints to customize the best solution for them

Value Streams and Sources:

Bill Savings

Utiliti

Storage can reduce bills through Demand Charge Management and Energy Arbitrage.

Demand Response

Utility programs provide a contracted revenue stream for curtailing energy usage.

Coincident Peak Reduction

Grid operators sometimes levy a "hidden" demand charge, based on their demand during coincident peak hours.

Upfront Capex Reductions

State and federal incentives exist to modernize and stabilize regional grids.

Microgrid

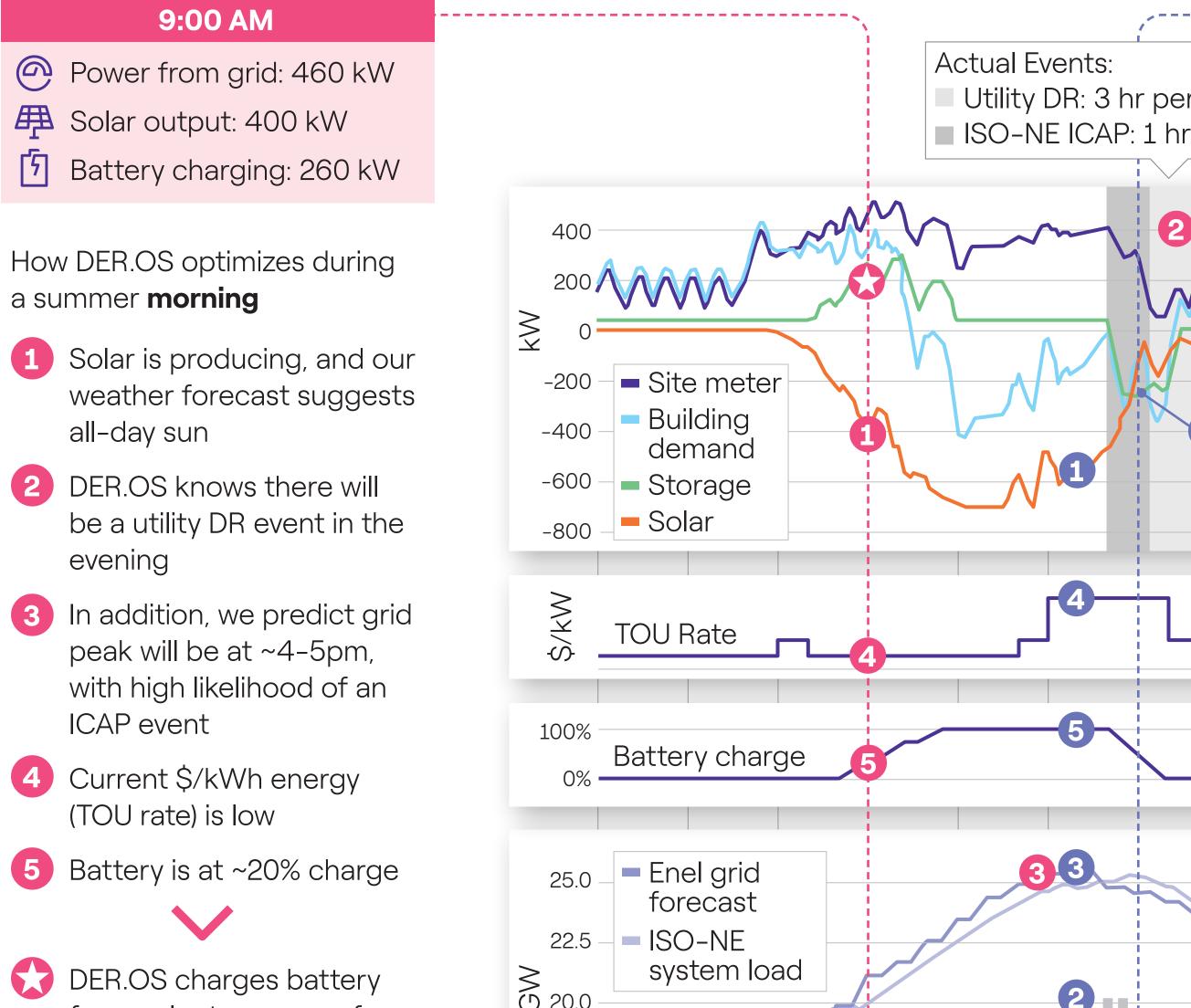
Distributed energy system (solar + storage + genset) to self-produce energy on site while connected to the grid

software that learns the facility's

real-time performance of

the distributed energy

resources (DERs)


behavior and optimizes

Standalone storage A battery system that stores power when it's

Solar-plus-storage cheap and dispatches Solar with storage to it when prices go up store self-generated power for later use

A case study of battery optimization for a campus in Massachusetts

Optimized battery dispatch reveals notable financial benefit of solar+storage

<u></u>	6:00 PM – DR Event
vents: DR: 3 hr per event E ICAP: 1 hr per year	 Export to grid: 284 kW Solar output: 140 kW Battery discharging: 260 kW
	How DER.OS optimizes during a summer afternoon
	1 Solar production is decreasing
	 DER.OS predicts ICAP event will occur between 4-6pm
4	3 Dispatch should hit both ICAP and DR event
	4 Current \$/kWh energy is high
	5 Battery is at 100% charge at 4pm
3	
	DER.OS will dispatch battery at full capacity for 2 hours, starting 30

Upfront cost of battery energy storage system

\$1,205,000
\$18,000
\$365,000
\$1,588,000
30% of Capital Expenses
\$0.03-\$0.05 per kWh of solar
_

...enables significant cash flows across many revenue streams...

Customer Cash Flow	Total	Year 1	Year 2	Year 3	Year 20
Savings	/				
Electricity Bill Savings Coincident Peak Event	\$411,000 \$1,759,200	\$16,800	\$17,000 \$35,200	\$17,200 \$49,600	\$24,800 \$140,000
Program Revenues					
DR Forecast	\$1,608,800	\$108,200	\$111,200	\$114,400	\$99,400
Incentives					
Smart Storage Adder	\$728,000	\$38,200	\$38,000	\$37,800	\$34,600
Operating Expenses		/			
Battery Management Service	s (\$476,800)	(\$17,400)	(\$19,800)	(\$20,200)	\$29,200

...and reveals example payback period

Economics

from solar to prepare for DR event, ICAP event, and peak \$/kWh rate in the afternoon/evening

 20.0 17.5 					edicted SO-NE Pevent			
15.0								_
12am	3am	6am	9am	noon	3pm	6pm	9pm	

minutes before ICAP event prediction, for optimal chance of reducing load at peak hour while also hitting DR event

Total project revenues	\$4.04M
Net project price after incentives	\$1.1M
Simple payback time	5-6 years

enelx.com/northamerica

To learn more about Enel X's battery storage offerings, please contact Charles Ward, Channel Account Executive: charles.ward@enel.com