

A Financial Algorithm for Computing the Levelized Cost (US\$/kg; €/kg) of Producing Green Hydrogen (LCOH): A Quantitative Tool

19-22 Sept 2022 Anaheim, CA USA <u>MICHAEL STAVY¹</u>, Advisor on Renewable Energy Project Finance ¹BA-University of Illinois at Chicago (UIC); MBA –Northwestern Kellogg; CPA (Illinois-Inactive) <u>michael@michaelstavy.com</u> <u>www.michaelstavy.com</u> M: +1-312-523-8328

Description of Green Hydrogen (H₂) Production and the Explanation of the LCOH Algorithm

- There are <u>no hydrogen (H_2) wells</u>. Green H_2 must be produced using a water electrolyzer powered by solar electricity to split water into green H_2 and O_2
- This white paper discusses the technology, operation and finances of a model utility scale water electrolyzer. The paper explains the levelized cost (LC) method

The White Paper's <u>Excel</u> LCOH Algorithm Worksheet

Line		07/09/22	A↓	B↓
1. Foreign Exchange-FX			US\$/€ ↓	m/d/y
FX	Enter	US\$/€ exchange rate	\$1.14509	02/07/22
2 W				

- The author has developed a LCOH algorithm for a model water electrolyzer.
- The paper explains the LCOH algorithm. The LCOH algorithm requires values for the nine electrolyzer specs [independent variables] to then compute the 17 dependent variables including Line Q, the LCOH itself.
- The LCOH algorithm is presented on the paper's <u>Excel</u> LCOH Worksheet. The LCOH worksheet, with the model electrolyzer's nine specs (Lines 1→9) and the 17 dependent variables (Lines A→W) is in the column to the right.
- The paper discusses the basis for the nine spec values as well as the sources for the price of gray (blue) H₂.
- Readers can enter their own nine spec values on their copy of the paper's <u>Excel</u> LCOH algorithm worksheet
- The goal of this paper is first, the computation of the LCOH of green H₂ produced at the model electrolyzer and second, the comparison of the LC of green H₂ with the cost of gray H₂ (blue H₂) [blue H₂ = gray H₂ + carbon capture]
- Gray H_2 is currently produced using natural gas in the <u>carbon intensive</u> steam methane reformation (SMR) process. It is used as an industrial gas and as a feedstock for the production of other industrial gases [i.e. ammonia (NH₃) methane (CH₄); methyl alcohol (CH₃OH)].

1	Enter	Electrolyzer Efficiency-η-%	70%	hrs/day ↓	
2	Enter	Electrolyzer Capacity Factor-%	83.3%	20.0	
3	Enter	Electrolyzer Power Input-MW	300.0		
A	Computed	Max Daily MWh of Solar Electricity to be converted into H ₂ -MWh _{ELECT} /day	6,000		
В	Enter	Daily H ₂ Produced-MWh _{H2} /day	4,200		
CF	Enter	Conversion factor-MWh _{ELECT} /kg _{H2}	0.03941	ton _m /day ↓	
С	convert MWh to kg	Daily H ₂ Produced-kg _{H2} /day	106.572	107	
D	Computed	Yearly H ₂ Produced-kg _{H2} /year	38.898.601	€/MW ↓	
4	Enter	Electrolyzer CapEx-US\$/MW	\$1,082,152	€ 945.037	
E	Computed	Total Invested Capital-US\$/Electrolyzer	\$324.645.600	€ 283,510,990	
	Computed		φ <i>32</i> 1,0 13,000	0 203,510,550	
3. Co	st of the Solar Electricity (Converted into H ₂		€/MWh I	
5	Enter	Cost of the Solar Electricity converted into H ₂ -COE _{FLECT} -US\$/MWh _{ELECT}	\$35.00	€ 30.57	
F	MWh converted to kg	Cost of the Solar Electricity converted into H ₂ -COE _{ELECT} -US\$/kg _{ELECT}	\$1.38	€120	
-		e obt of the Solar Electrony <u>converted</u> into 112 configered	φ1.50	€ 1.20 €/kg 个	
4. Aft	er Efficiency (n) Lost Cos	t of the Solar Electricity Converted into H ₂		€/kg ↓	
G	computed	After n Loss Cost of the Solar Electricity converted into H ₂ -AELCOE _{FLECT} -US\$/kg _{ELECT}	\$1.97	€ 1.72	
H	computed	Extra Cost (AELCOE _{ELECT} -COE _{ELECT}) of the Solar Electricity-US\$/kg _{ELECT}	\$0.59	€ 0.52	
Ι	computed	% Increase in the Cost of the Solar Electricity when converted into H ₂	43%	43%	
	1				
<u>5. Wa</u>	nter Electrolyzer CapEx an	nd OpEx			
6	Enter	Annual Fixed O&M Cost-% Line E, Total Electrolyzer CapEx	3.00%	€/yr↓	
J	Computed	Annual Fixed O&M Cost-US\$/yr	\$9,739,368	€ 8,505,330	
7	Enter	Variable O & M Cost-US\$/kg _{H2}	\$0.23	€ 0.20	
8	Enter	Physical Life of the Electrolyzer-Years	20	145,999	
9	Enter	Cost of Capital-%	6.0%	€/yr ↓	
K	Computed	Capital Amortization Factor-CAF	\$0.0872	€ 0.0761	
L	Computed	Annual Capital Amortization-ACA-US\$/yr	\$28,304,083	€ 24,717,780	
<u>6. Co</u>	mputation of the LCOH-U	I <mark>S\$/kg</mark>	US\$/kg↓	€/kg ↓	
М	Computed	Annual Capital Amortization-ACA-US\$/kg	\$0.73	€ 0.64	
N	Computed	Fixed O&M Cost-US\$/kg	\$0.25	€ 0.22	
0	Transferred from Line 7	Variable O&M Cost-from Line 7 above-US\$/kg	\$0.23	€ 0.20	
Р	Transferred from Line F	After η Loss Cost of the Solar Electricity <u>converted</u> into H ₂ -AELCOE _{ELECT} -US\$/kg	\$1.97	€ 1.72	
0	Computed	Green LCOH-US\$/kg	\$3.18	€ 2.78	
	I				
7 Difference between the LCOH and the Current Market Price of Cray HUS\$/kg					
R	Transferred from Line O	Green LCOH-US/kg	\$3.18	€ 2 78	
10	Fnter	Gray H2 Market Price-US\$/kg	\$1.00	€0.87	
C C	Computed	The Green I COH is greater (less) the Gray H. Market Price US\$/kg	\$7.10	£ 1 00	
с Т		$\frac{1}{10000000000000000000000000000000000$	φ2.10	(00/	
1	Computed	76 that the Oreen LCOH is greater (-%) then Oray H ₂ wharket Price	09%	09%0	

- The first use for green H_2 will be as a substitute for gray H_2 as an industrial gas
- The current H₂ industry price unit for gray H₂ is the US\$/kg (€/kg). This paper also uses the kg, the SI unit for mass, not volume (Nm³), as its price unit. The ton_m is also used.
- Line FX is used to convert US\$ values into € values. One £ value is also converted in a US\$ value
- Line CF--There are 39.41 kWh (0.03941 MWh) (HHV) in each kg of H₂ This converts solar electric energy measured in kWh into solar energy measured in kg of H₂
- Line 1-Efficiency (η) is 70%. A 100% η electrolyzer will only use 39.41 kWh of solar electricity to produce 1 kg of green H₂
- Line 2, the Capacity factor is 83.3% (20 hrs/day) which is very high
- Line 3, Electrolyzer capacity is 300 MW. Capacity is measured in MW_{ELEC} of solar electricity that power the electrolyzer
- Line 4, Electrolyzer CapEx is US\$1,082,152/MW (£800,000). One British water electrolyzer manufacturer stated that its 2022 Electrolyzer CapEx is £800,000/MW while next year it would be £500,000/MW. A 37.5% reduction.
- Line E, Total Model Electrolyzer Invested Capital is US\$364,645,600. This is the 300 MW on Line 3 times the US\$1,082,152/MW on Line 4
- Line 5, Cost of Solar Electricity is US\$35.00/MWh which is a good price for US solar

electricity

- Line K, annual capitalization factor, US\$0.0872, is the annual payment for an annuity have US\$1.00 as the amount borrowed, a life of 20 years (Line 8) and a cost of capital of 6% (Line 9).
- 20 years is a very long life for an electrolyzer; 6% is a very low cost of capital.
- With the nine spec values entered on the worksheet, the LC of green H₂ is US\$3.18/kg which is US\$2.18 or 69% greater than the US\$1/kg, current price of gray H₂
- The cost of the solar electricity is 62% of the LCOH while the annual electrolyzer CapEx amortization is 22.9%.

8. Difference between the LCOH and the Current Market Price of Blue H ₂ -US\$/kg				€/kg _{H2} ↓
U	Transferred from Line Q	Green LCOH-US\$/kg	\$3.18	€ 2.78
11	Enter	Blue H ₂ Market Price-U\$/kg	\$2.50	€ 2.18
V	Computed	The Green LCOH is greater (less) the Blue H ₂ Market Price-US\$/kg	\$0.68	€ 0.59
W	Computed	% that the Green LCOH is greater (-%) then Blue H_2 Market Price	21%	21%

Download my RE+ 2022 White Paper and its <u>Excel</u> LCOH Algorithm Worksheet from my website <u>www.michaelstavy.com</u> © 2022 Michael STAVY