Monitoring Early Occlusal Caries on Primary Teeth with Optical Coherence Tomography

JungSoo Kim DDS¹, Yihua Zhu MS², Brent Lin DMD¹, Donald Curtis DMD², Daniel Fried PhD²

¹Division of Pediatric Dentistry; ²Department of Preventive and Restorative Dental Sciences, University of California, San Francisco

Introduction

- Early occlusal caries are diagnosed with visual-tactile methods, using the explorer, and possibly radiographs. These methods have been found to be unreliable and have risks for false positives. 1-2
- Optical Coherence Tomography (OCT) is an imaging method that can capture 3D cross-sectional images of structures in the oral cavity.³ It works by using near-infrared light (1300 nm) to quantitatively measure light scattering coming from different layers of tooth and mineral changes of carious lesions.⁴
- <u>Aim</u>: To assess structural changes and lesion activity of early occlusal pit and fissure caries on primary teeth using OCT following remineralization.
- Hypothesis: OCT will be able to successfully detect early occlusal caries, measure severity by visualizing its depth, and monitor changes in lesion structure by identifying the presence of a transparent surface zone of reduced reflectivity that is indicative of an arrested lesion.

Methods

Study Participants: 29 participants (n=29 with 59 primary molars) recruited from the UCSF Pediatric Dentistry Clinic.

- <u>Inclusion Criteria</u>: Aged 6 to 10; High caries risk; Must have at least two primary teeth with suspected pit and fissure caries; Living in areas with community fluoridation (to eliminate water fluoridation as a potential confounding variable).
- <u>Exclusion Criteria</u>: Obvious cavitations or lesion severity that requires restorative treatment; Existing restorations covering pits and fissures.

Lesion Identification and Clinical Diagnosis: Lesions were identified by the study investigator (pediatric dental resident) and was given a diagnosis according to the ICDAS codes⁵ (Table 1).

Table 1. International Caries Detection and Assessment System (ICDAS)

ICDAS Code	Description
0	Sound enamel with no visible caries.
1	Visible initial changes in pit and fissures of enamel when air-dried.
2	Greater changes in enamel extending beyond pit and fissures, and lesions visible without drying with air.

Data Collection: All lesions were monitored and scanned with OCT (Figure 1) during the 0-month, 3-month and 6-month visits (Figure 2).

- Two OCT scans were taken for each lesion.
- Fluoride varnish was applied to all lesions to promote remineralization after imaging at every visit.

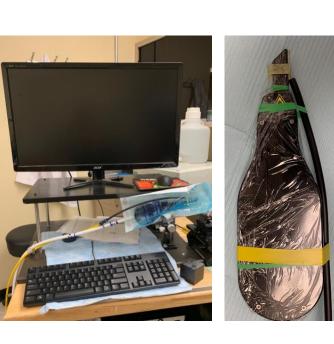


Figure 1. OCT System

Swept-source CP-OCT system from Santec (Komaki City, Japan) operating at a wavelength of 1310 nm was used with an autoclavable 3D-printed dehydration attachment made with dental resin to acquire clinical images. The OCT system acquired 3D images 6 x 6 mm² and 7 mm in depth.

Figure 2. Data Collection Process

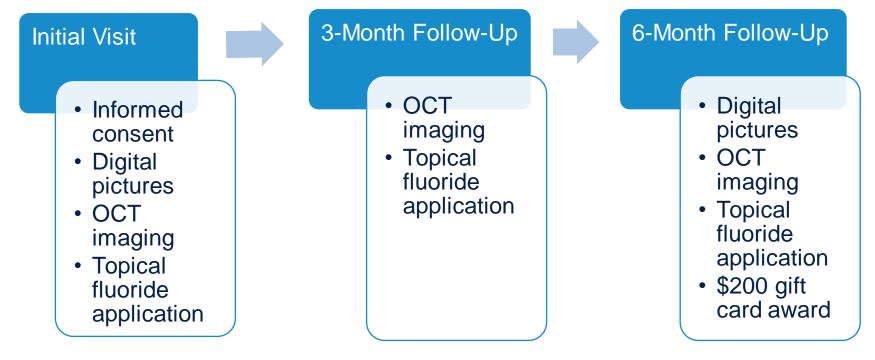


Image Analyses: OCT images were converted and processed with MATLAB, and further analyzed with Dragonfly 2021.1 from ORS (Montreal, Canada). Manual image registrations, including rotation, translation, and scaling transformation, were performed.

- Caries Depth: Lesions were classified according to its depth (Table 2).
- <u>Transparent Surface Zone Presence</u>: Presence of a surface zone was evaluated on a binary scale (Yes/No).

Table 2. Caries Depth Classifications

Caries Depth	Description
E1	Less than half way through the enamel.
E2	More than halfway through the enamel.
D1	Penetration into the dentin.

Results

Initial Visit: Clinically, all 59 teeth had visible lesions (56 teeth (95%) with ICDAS code 1, 3 teeth (5%) with ICDAS code 2).

From OCT scans, 58 teeth (99%) had pit and fissure lesions. One tooth (1%) did not show any lesions on OCT, although it was clinically diagnosed as ICDAS code 1 (False Positive) (Figure 3).

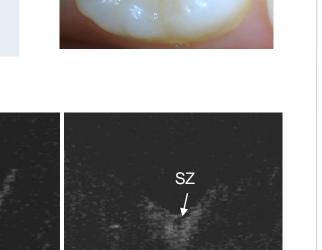

3-Month and 6-Month Follow-Up: OCT scans showed changes in lesion depth and activity over 6 months (Table 3, Figure 4-6).

Table 3. Caries Depth and Presence of Surface Zone Visualized in OCT Images

OCT Images	0-Month N=58 Teeth	3-Month N=58 Teeth	6-Month N=58 Teeth
Caries Depth:			
• E1	44 (76%)	44 (76%)	40 (69%)
• E2	10 (17%)	12 (21%)	16 (28%)
• D1	4 (7%)	2 (3%)	2 (3%)
Transparent Surface Zone Presence:			
• No	44 (76%)	33 (57%)	34 (59%)
• Yes	14 (24%)	25 (43%)	24 (41%)
	,	,	,

No Lesion Shown on OCT (False Positive)

Figure 3. Tooth with

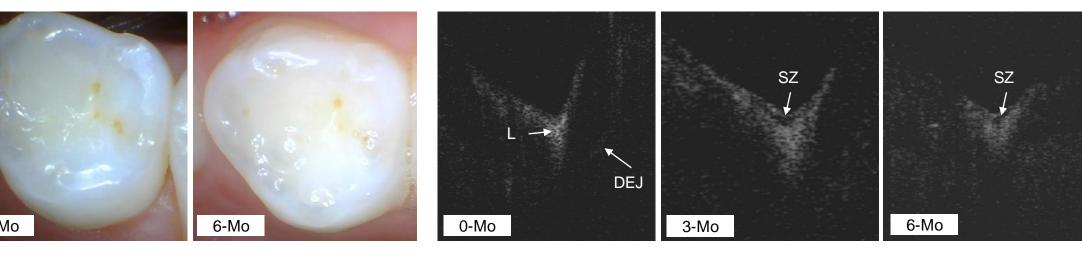
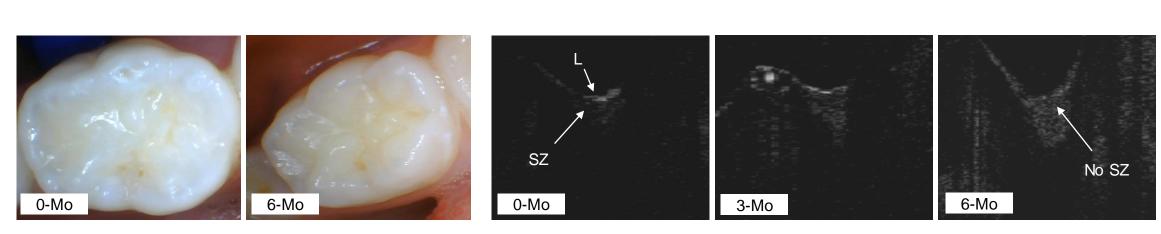
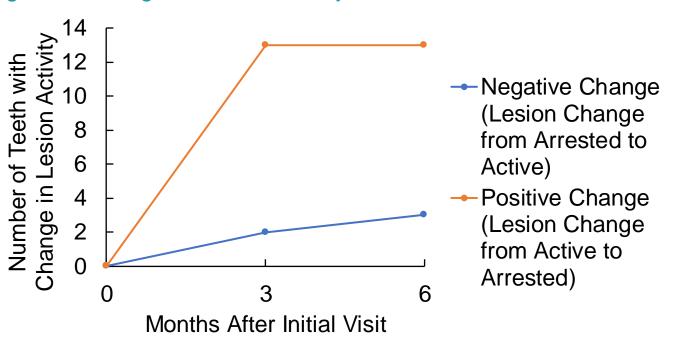


Figure 4. Positive Change in Lesion Activity from Active to Arrested in 6 Months

- Tooth #I was suspected to have an early occlusal pit and fissure caries (ICDAS code 1).
- <u>Initial OCT scan</u>: Increased light reflectance in the distal pit denotes existence of carious lesion (**L**) with D1 depth (approaching the dentino-enamel junction (**DEJ**)). There is no surface zone (active lesion).
- OCT scan at 3 and 6 months: A transparent surface zone (SZ) has formed (arrested lesion).




Figure 5. Negative Change in Lesion Activity from Arrested to Active in 6 Months

- Tooth #T was suspected to have an early occlusal pit and fissure caries (ICDAS code 1).
- <u>Initial OCT scan</u>: Caries lesion (**L**) with depth of D1 present in the lingual pit, with a transparent surface zone (**SZ**) (arrested lesion).
- OCT scan at 3 and 6 months: There is an increase in surface area with light reflectance and the transparent surface zone (**SZ**) has disappeared (active lesion).

6-Month Results Summary:

- Clinically, all 59 teeth did not show significant changes, according to its ICDAS diagnosis.
- From OCT scans, 16 teeth (28%) showed changes in lesion activity (Figure 6):
 - Positive change in 13 teeth (81%) (active to arrested)
 - Negative change in 3 teeth (19%) (arrested to active)
- No activity changes were seen in 42 teeth (72%):
 - 31 teeth (74%) remained active
 - 11 teeth (26%) remained arrested

Figure 6. Change in Lesion Activity Over 6 Months

Conclusions

- 1. OCT can detect early occlusal caries that cannot be identified through clinical exam or radiographs.
- 2. OCT can visualize lesion depth through enamel and dentin layers.
- 3. OCT can assess lesion activity (active vs. arrested) by detecting a transparent surface zone, which is indicative of arrested lesions.

Acknowledgement

This research was supported by the National Institute of Dental and Craniofacial Research (Grant No. R01-DE027335).

References

- 1. Penning C, van Amerongen JP, Seef RE, ten Cate JM. Validity of probing for fissure caries diagnosis. Caries Res. 1992;26(6):445-449.
- Espelid I, Tveit AB, Fjelltveit A. Variations among dentists in radiographic detection of occlusal caries. Caries Res. 1994;28(3):169-175.
- 3. Otis LL, Everett MJ, Sathyam US, Colston BW. Optical coherence tomography: A new imaging. *J Am Dent Assoc.* 2000;131(4):511-514.
- Fried D. Lasers and optics for measuring tooth decay. OPN Opt Photonics News. Published online 2010:15-19.
 Ismail Al. Sohn W. Tellez M. et al. The International Caries Detection and Assessment.
- 5. Ismail AI, Sohn W, Tellez M, et al. The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. *Community Dent Oral Epidemiol*, 2007;35(3):170-178.