Efficacy and Safety of Intranasal Dexmedetomidine for Pediatric Sedation Dentistry

Yanelis Mestre, DMD¹, John H Unkel, DDS, MD¹, Elizabeth J Berry DDS, MSD, MPH¹, Dennis Reinhartz, PhD², Judy Reinhartz, PhD³

Bon Secours St. Mary's Hospital of Richmond, Richmond, VA, ²The University of Texas at Arlington, Arlington, Texas, ³The University of Texas at El Paso, El Paso, Texas

PURPOSE

 This prospective and cohort study will compare the safety and efficacy intranasal dexmedetomidine with oral midazolam, and oral midazolam/hydroxyzine all with nitrous oxide when used for sedation during pediatric dental procedures

BACKGROUND

- Dental fear and anxiety are common among children.
- Moderate sedation provides a safe alternative to general anesthesia and is used routinely to facilitate dental treatment in anxious patients.¹
- The discontinuation of commercial production of chloral hydrate and the avoidance of opioids has left a void in the sedation protocols of many pediatric sedationists.
- Dexmedetomidine is a selective alpha-2 agonist that provides sedation, anxiolysis, and mild analgesia without suppressing respiratory drive or compromising airway integrity.²
- Dexmedetomidine has been successfully used for pediatric procedural imaging sedation as well as a premedication before general anesthesia ³⁻⁵
- Retrospective studies demonstrate that intranasal dexmedetomidine is safe and effective when combined with nitrous oxide for moderate pediatric dental sedation.^{6,7}
- Our objective was to add to the growing body of information regarding the efficacy and safety of intranasal dexmedetomidine for moderate pediatric dental sedation.

REFERENCES

- Cianetti S, Lombardo G, Lupatelli E, et al. Dental fear/anxiety among children and adolescents. A systematic review. Eur J Paediatr Dent. 2017; 18 (2): 121-30.
- Mason KP, Lerman J. Review article: Dexmedetomidine in children: current knowledge and future applications. Anesth Analg. 2011;113(5):1129-42.
- Mason KP, Zurakowski D, Zglesweski SE. High dose dexmedetomidine as the sole sedative for pediatric MRI. Pediatric Anaesth. 2008; 18(5) 403-11.
- Mason KP., Robinson F., Fontaine P., Rescilla R. Dexmedetomidine offers an option for safe and effective sedation for nuclear medicine imaging in children. Radiology. 2013; 267(3): 911-17.
- Mekitarian Filho E, Robinson F, Brunow de Carvalho W, Gilio A, Mason K. Intranasal dexmedetomidine for sedation for pediatric computed tomography imaging. The Journal of pediatrics. 2015; 166(5): 1313-15.
- Unkel JH, Cruise C, Rice A et al. A retrospective evaluation of the safety profile of dexmedetomidine and nitrous oxide for pediatric dental sedation. Pediatr Dent 2021;42(2):129-3.
- Unkel JH, Berry EJ, Ko BL, et al. Effectiveness of intranasal dexmedetomidine with nitrous oxide compared to other pediatric dental sedation drug regimens. Pediatr Dent 2021; 43(6): 457-62

Sedation Score	
0	None (typical response/cooperative for this patient)
1	Mild (anxiolysis), tired, verbally responsive
2	Moderate (purposeful response to verbal commands light tactile sensation), somnolent
3	Deep (purposeful response after repeated verbal or painful physical stimulation), deep sleep
4	General anesthesia (unarousable)
Behavior Score	
0	Excellent (quiet and cooperative)
1	Good (mild objections and/or whimpering but treatment not interrupted)
2	Fair (crying with minimal disruption to treatment)
3	Poor (struggling that interfered with operative procedures)
4	Prohibitive (active resistance and crying, treatment cannot be rendered)

Figure 1: Modified AAPD scale used to assess efficacy of sedation

METHODS

- · A prospective multi-site randomized control study.
- Inclusion criteria: 3-6 years old, ASA I or II, and English speaking
- Children were randomized and received one of the following regimens:
 - 3 mcg/kg intranasal dexmedetomidine with ≥65% nitrous oxide/oxygen at a calculated flow rate.
 - 0.7 mg/kg oral midazolam with ≥65% nitrous oxide/oxygen at a calculated flow rate.
 - 1 mg/kg oral hydroxyzine with 0.7 mg/kg oral midazolam with ≥65% nitrous oxide/oxygen at a calculated flow rate.
- Demographic data, procedural times, minor and major adverse events, and quality of sedation were identified and recorded.
- Efficacy of sedation was determined by utilizing a scale modified from the AAPD (see figure 1).
- For the sedation to be considered effective, the treatment needed to be completed, and the patient could only receive a behavior score of 0-2 (see figure 1). Those who received a score of 3 or 4 in either category were considered to have ineffective sedations regardless of completion status.
- For the sedation to be considered safe, no minor nor major adverse events were recorded (see figure 2).

DATA ANALYSIS

- Data analysis for categorical data will be performed by Fisher's exact test or chi-square test
- Analysis of variance will be performed to compare the difference between the sedation groups. The level of statistical significance will be taken as p-values <0.05.

RESULTS

- Two children were recruited into this study: 1 in the oral midazolam group and 1 in the intranasal dexmedetomidine group
- There was no statistical difference in the efficacy between sedation groups
- · No minor nor major adverse events were recorded

CONCLUSIONS

 Based on this study's current tentative data, no conclusions can be reported at this time

LIMITATIONS

- · Limitations include:
 - · Small sample size
- Ongoing data collection must be continued to determine statistical support

Minor Adverse Events Apnea Desaturation ≤ 92% SpO₂ Airway obstruction Bradycardia≤ 60 bpm Hypotension (defined by PALS & Aldrete) Major Adverse Events Death Aspiration Cardiac arrest Respiratory arrest Laryngospasm Level of care increase Unplanned hospital admission

Figure 2: Minor and Major Adverse Events